CODE	CHARACTER	CODE	CHARACTER	CODE	CHARACTER
00	SPACE	20	T	40	(a)
01	A	21	U	41	!
02	B	22	V	42	"
03	C	23	W	43	\#
04	D	24	X	44	\$
05	E	25	Y	45	\%
06	F	26	Z	46	
07	G	27	,	47	/
08	H	28	.	48	(
09	I	29	-	49)
10	J	30	0	50	-
11	K	31	1		
12	L	32	2		
13	M	33	3		
14	N	34	4		
15	0	35	5		
16	P	36	6		
17	Q	37	7		
18	R	38	8		
19	S	39	9		

DMC-290 OPERATION GUIDE MODEL: DMC-290

DIGI MATEX, Inc 80 OAK STREET NORWOOD, NJ 07648
Phone: 201-784-3400
Fax: 201-784-3770
Internet: www.DigiMatex.com

EDITION	MONTH	YEAR
$1^{\text {ST }}$	MARCH	2000
2^{ND}	JUNE	2000
3^{RD}	JUNE	2001
4^{TH}	DECEMBER	2001
5^{TH}		
6^{TH}		

4.3. DMC-290 AC / Battery Operation

The DMC-290 can be operated with AC power or with the optional internal battery. The battery will automatically charge whenever the scale is plugged into AC power. The charging current is regulated by a battery monitor circuit, so that the battery can not be overcharged.

The DMC-290 system is powered internally at a low power level wheneve the scale is plugged into the AC line or the battery switch is in the "ON" position. The battery power switch is located on the bottom of the scale directly under the serial number on the side panel. The front panel "ON/OFF" switch enables the display and primary power.

When the battery switch is "ON" and the AC is not connected, a low level battery current will flow even if the display is "OFF". To prevent battery discharge when stored, turn the battery switch to "OFF" whenever unit is not used.

Do not store the scale without turning off the battery power switch.

4.4. DMC-290 Connector Matrix

NOTE: WHEN THE DC-190 CONSOLE IS BENG USED WITH A PLATFORM OTHER THAN AN SX LATFORM THE PS-100 A/C ADAPTER IS REQUIRED

4.5. Remote Platform Wiring

DIGI \qquad
\qquad
PIN 4
PIN 4
PIN 5 PIN 6
PIN 6
PIN 7
PIN 7 \qquad
(+) EXCITATION
(-) EXCITATION S

4.2. DMC-290 Calibration Procedure

Prior to the calibration of the scale, please note that the SPEC settings corresponding to Minimum Display, Weight Decimal Point Position and Load Cell Sensitivity for that particular scale have to be set correctly,
1 Enter [8][7][1][5] while pressing the [REZERO] key. The display will show Weight in the Weight Display and Zero Count in the Value / \$ Display. The zero count should be $100,000 \pm 10,000$.
2 Press the [CODE] key in order to compute the zero point. It takes a few seconds for the zero calibration.
3 After computing the zero point, the Value / \$ Display shows the Zero Counts. Ensure that the counts are $100,000 \pm 10000$. If not, repeat Step 2 until the counts are in the above range
4 Press [REZERO] key to zero the weight before span calibration.

$6 \quad$ The span weight that appears in the weight display should be as EXAMPLE (1) EXAMPLE (2) close as possible to the actual weight that is placed on the platter. 5.1275 5.3985 To adjust the span weight press [PIECES] or [TARE] key. If this procedure is not done properly, the scale may appear noisy.

OR OR
4.7997
4.9124

Example (1) 5.1275 is closer than 4.7997 Example (2) 4.9124 is closer than 5.3985

REMOVE WEIGHT AND REPEAT STEPS 2 THROUGH 4

8 Place (capacity) $\underline{5 \mathrm{lb}} \underline{\text { weight }}$ on the platter. In this illustration, capacity weight of $\underline{5 \mathrm{lb}} \underline{\text { is used as an example. }}$
9 Type [5][.][0][0][0][0], Enter the weight placed on the platter using the [Numeric] Keys.
10 Press the [$*$ PROG] key to start span calibration.
11 After a few seconds, the display shows the counts for the weight on the platter in the Weight/Unit Weight Display and the Value / \$ Display shows the Internal Count with the zero point counts added to it.

12 Removing the weight, the unit weight should indicate zero and the Value / \$ Display the Zero starting point (If Spec38 bit 1 Internal Count is set to $1,000,000$, the count should be around 200,000). If the zero point is not correct, please carry out the calibration procedure again.
13 Pushing the [MODE] key once exits calibration mode.
14 Pushing the [MODE] key once more returns the scale to the weighing mode.

Note: (example based on 5.0000 lb. scale)

Note: The scale may be calibrated with less than capacity weight, but for the best results capacity weight is recommended.

Please Note: Pressing [CODE] key in step 2 is used for auto finding the zero number. Customer can manually search for zero number by pressing [+] and [-] keys. Load Cell Sensitivity can be set in SPEC and fine adjustment are made by pressing [PIECES\} and [TARE] keys. The load cell Sensitivity specs may change during the calibration process.

1.0. GENERAL

1.1. Indicator Lamps

LAMP	
Zero	When the gross weight is zero. "ON"
Tare	When tare weight is set.
Gross	When [Net /Gross] key is pressed.
Insuff	When the net weight is below a specific percentage of capacity weight.
Recomp	When unit weight recomputing is possible.
Memory	When quantity is being accumulated or when memory overflows.
Prog	When in the programming mode with [MODE] key pressed.
Kg	When the item is weighed in Kg unit with [Kg/Lb.] key pressed.
Lb	When the Item is weighed in Lb. unit with [Kg/Lb.] key pressed.
Batt	When battery's power level is low.
Scale 1	When Scale 1 is used.
Scale 2	When Scale 2 is used
Scale 3	When Scale 3 is used.
Scale 4	When Scale 4 is used.
IN	Inventory In
OUT	Inventory Out

1.2. Key Functions

KEY	FUNCTIONS
ON/OFF	For turning the machine ON and OFF.
0 TO 9	Denomination / Numeric Keys.
	Decimal Point.
REZERO	Used to reset the scale to zero. Used to enter the maintenance mode along with other keys
TARE	Used for setting and clearing tare weight.
Kg/Lb	Used to change the weighing unit between Kilogram and Pound. (Used in Weight Mode)
CLEAR	Used to clear the key entries and unit weight. (See Spc 6 Bit 2)
NET/GROSS	Used to change between Gross and Net. Also used as inventory key
UNIT WEIGHT	Used to enter the unit weight using numeric keyboard.
MODE	Used for entering programming mode from weighing mode.
SCALE	Used to switch between different scales
+	Used for Accumulation function and for incrementing SPEC numbers in SPEC setting mode. Also used to program set point in programming mode
DATE	Used for Subtraction function and for decrementing SPEC numbers in SPEC setting mode. Also used to program Part No in programming item. In Programming mode, it can be used for viewing or setting date/time.
$\begin{gathered} * \\ \text { PROG } \end{gathered}$	Used for storing the specification data and used to print out weight information when printer is connected.
CODE IN/OUT	[CODE] key, for calling out ITEM memory data. Also used to program commodity name in programming mode
PIECES	Used for computing unit weight by sampling.

4.1. Ver. 2.90 Weights \& Measures Specification (continued :

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Spec No. \& \multicolumn{6}{|c|}{Bit 3} \& \multicolumn{3}{|c|}{Bit 1} \& \multicolumn{3}{|c|}{Bit 0} \\
\hline 30 \& \multicolumn{12}{|l|}{Load Cell Sensitivities Selection (mV/V) (Scale 1)} \\
\hline \& SPC \& MIN \& MAX \& SPC \& MIN \& MAX \& SPC \& N \& MAX \& SPC \& MiN \& MAX \\
\hline auto \& 0000 \& 3.46 \& 4.00 \& 0100 \& 1.95 \& 2.25 \& 1000 \& 1.09 \& 1.27 \& 1100 \& 0.61 \& 0.71 \\
\hline adjust- \& 0001 \& 3.00 \& 3.46 \& 0101 \& 1.69 \& 1.95 \& 1001 \& 0.95 \& 1.09 \& 1101 \& 0.53 \& 0.91 \\
\hline ing \& 0010 \& 2.59 \& 3.00 \& 0110 \& 1.46 \& 1.69 \& 1010 \& 0.82 \& 0.95 \& 1110 \& 0.46 \& 0.53 \\
\hline 1001 \& 0011 \& 2.25 \& 2.59 . \& 0111 \& \& \& 1011 \& 0.7 \& 0.82 \& 1111 \& 0.40 \& 0.46 \\
\hline 31 \& \multicolumn{12}{|l|}{Load Cell Sensitivities Selection (mV/V) (Scale 2)} \\
\hline \& SPC \& MIN \& MAX \& SPC \& MIN \& MAX \& SPC \& MIN \& MAX \& SPC \& MII \& MAX \\
\hline auto \& 0000 \& 3.46 \& 4.00 \& 0100 \& 1.95 \& 2.25 \& 1000 \& 1.09 \& 1.27 \& 1100 \& 0.61 \& 0.71 \\
\hline adjust- \& 0001 \& 3.00 \& 3.46 \& 0101 \& 1.69 \& 1.95 \& 1001 \& 0.95 \& 1.09 \& 1101 \& 0.53 \& 0.91 \\
\hline ing \& 0010 \& 2.59 \& 3.00 \& 0110 \& 1.46 \& \({ }_{1.46}^{1.69}\) \& 1010 \& 0.82 \& 0.95 \& 1110 \& 0.46 \& 0.53 \\
\hline 1001 \& 0011 \& 2.25 \& 2.59. \& 0111 \& \& \& 1011 \& 0.71 \& 0.82 \& 1111 \& 0.40 \& 0.46 \\
\hline 32
1010 \& \multicolumn{3}{|l|}{Calibration Mode protected by Span Switch 0 : Yes 1 : No} \& \multicolumn{3}{|l|}{\[
\begin{aligned}
\& \text { Battery Low Lamp } \\
\& \text { 0: Yes } \\
\& \text { 1: No }
\end{aligned}
\]} \& \multicolumn{3}{|l|}{\begin{tabular}{l}
Auto Exit from Add Mode \\
0 : No \\
1 : Yes
\end{tabular}} \& \multicolumn{3}{|l|}{\begin{tabular}{lll}
External \& Load \& Cell \\
(Scale 3) \& \& \\
\(0:\) No \& \& \\
\(1:\) Yes \& \& \\
\& \& \\
\hline
\end{tabular}} \\
\hline 33 \& \multicolumn{3}{|l|}{Over Weight Mask at
\[
0:+1 d
\]
\[
1 \text { : +9d }
\]} \& \multicolumn{9}{|l|}{\begin{tabular}{lr}
\& Weight Decimal Point Positio \\
\(\mathbf{0 0 0}: 00000\) \& \(\mathbf{0 1 1}: 00.00\) \\
\(\mathbf{0 0 1 : 0 0 0 0 . 0}\) \& \(\mathbf{1 0 0}: 0.000\) \\
\(\mathbf{0 1 0}: 000.00\) \&
\end{tabular}} \\
\hline 34

000 \& \multicolumn{3}{|l|}{Not Used} \& \multicolumn{3}{|l|}{\begin{tabular}{l}
(For Scale 1) 0 :For Std / Normal Load Cell

1: For abnormal load cell with too large offset.

} \& \multicolumn{6}{|l|}{

A/D Board (Scale 1)

00 : Normal

01 : Prevent from Small vibration/ fast change in display

10 : Prevent from Medium vibration

11 : Prevent from Large slow change in display
\end{tabular}}

\hline 35
0000

000 \& \multicolumn{3}{|l|}{Not Used} \& \multicolumn{3}{|l|}{\begin{tabular}{l}
(For Scale 2) 0 :For Std / Normal Load Cell

1: For abnormal load cell with too large offset.

} \& \multicolumn{6}{|l|}{

A/D Board (For Scale 2)

00 : Normal

01 : Prevent from Small vibration/ fast change in display

10 : Prevent from Medium vibration

11 : Prevent from Large slow change in display
\end{tabular}}

\hline 36

00 \& \multicolumn{3}{|l|}{00:2 Minimum} \& \multicolumn{3}{|l|}{\[
$$
\begin{aligned}
& \text { isplay (Scale 3) } \\
& 10: 5 \\
& 11: 10
\end{aligned}
$$

\]} \& \multicolumn{6}{|l|}{| A/D Board (For Scale 3) |
| :--- |
| 00 : Normal |
| 01 : Prevent from Small vibration/ fast change in display |
| 10 : Prevent from Medium vibration |
| 11 : Prevent from Large slow change in display |}

\hline \multirow[t]{2}{*}{37} \& \multicolumn{12}{|l|}{Load Cell Sensitivities Selection (mV/V) (Scale 3)}

\hline \& \multicolumn{3}{|l|}{SPC MIN MAX} \& \multicolumn{3}{|l|}{SPC MIN MAX} \& SPC \& MIN \& MAX \& \multicolumn{3}{|l|}{SPC MIN MAX}

\hline auto \& \multicolumn{3}{|l|}{\multirow[t]{4}{*}{| $\mathbf{0 0 0 0}$ | $\mathbf{3 . 4 6}$ | 4.00 |
| :--- | :--- | :--- |
| $\mathbf{0 0 0 1}$ | 3.00 | 3.46 |
| $\mathbf{0 0 1 0}$ | 2.59 | 3.00 |
| $\mathbf{0 0 1 1}$ | 2.25 | 2.59. |}} \& \multirow[t]{4}{*}{0100

0101
0110
0111} \& 1.95 \& 2.25 \& 1000 \& 1.09 \& 1.27 \& 1100 \& 0.61 \& 0.71

\hline adjust- \& \& \& \& \& 1.69 \& 1.95 \& 1001 \& 0.95 \& 1.09 \& 1101 \& 0.53 \& 0.91

\hline ing \& \& \& \& \& 1.46 \& 1.69 \& 1010 \& 0.82 \& 0.95 \& \& \& 0.53

\hline 1001 \& \& \& \& \& 1.27 \& 1.46 \& 1011 \& 0.71 \& 0.82 \& 1111 \& 0.40 \& 0.46

\hline 38

0010 \& \multicolumn{3}{|l|}{\begin{tabular}{l}
(For Scale 3)

0 :For Std / Normal Load Cell

1: For abnormal load cell with too large offset

} \& \multicolumn{3}{|l|}{

Digital Tare When Loaded

0 : Allow

1:Not Allow

\end{tabular}} \& \multicolumn{3}{|l|}{\[

$$
\begin{aligned}
& \text { Internal Count } \\
& 0: 500,000 \\
& 1: 1,000,000
\end{aligned}
$$
\]} \& \multicolumn{3}{|l|}{```

Stability Check When
Changing Scales
0 : Yes
1 : No

```} \\
\hline 39 & & & & & SET & SPEC TO & 0" "0" "1 & " "0" & & & & \\
\hline \multicolumn{13}{|l|}{RS - 232 Specification ver.3.92: To enter this mode, enter the numeric keys \(\mathbf{1 , 4 , 3}\) while pressing the Re-zero Key.} \\
\hline Spec No. & \multicolumn{3}{|c|}{Bit 3} & & Bit 2 & & \multicolumn{2}{|l|}{Bit 1} & \multicolumn{4}{|c|}{Bit 0} \\
\hline 40-43 & \multicolumn{3}{|l|}{Not used} & \multicolumn{3}{|l|}{Not used} & used & & \multicolumn{4}{|c|}{Not used} \\
\hline 44 & \multicolumn{3}{|l|}{\begin{tabular}{l}
Operator Name \\
(ВСР-300) Set To "0"
\end{tabular}} & \multicolumn{6}{|c|}{\[
\begin{aligned}
& \text { Company Name (BCP-300) } \\
& 0=\text { default only, } 1=\text { input w/barbd. }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Not used} & Not used \\
\hline 45-59 & \multicolumn{3}{|l|}{Not used} & \multicolumn{3}{|l|}{Not used} & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 15
0011 & \begin{tabular}{l}
RS-232C (BCP) \\
Stop Bit \\
(Optional) \\
\(0: 1\) bit \(1: 2\) bits
\end{tabular} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { RS232C (BCP) } \\
& \text { With Header } \\
& \text { 0: Yes } \\
& \text { 1: No }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{array}{lr}
\hline & \text { RS-232 } \\
00 \text { : No } & 10: N \\
01 \text { : Odd } & 11: \text { E }
\end{array}
\]} & rity Bit \\
\hline 16
normally set 0001 & \multicolumn{3}{|l|}{\begin{tabular}{l}
SCALE 1: \\
00: Internal Scale 1 01: Internal Scale 2 10: External Scale 11: Force Balance
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
SCALE 2: \\
00: Internal Scale 1 01: Internal Scale 2 10: External Scale \\
11: Force Balance
\end{tabular}} \\
\hline 17
normally set 1011 & \multicolumn{3}{|l|}{\begin{tabular}{l}
SCALE 3: \\
00: Internal Scale 1 01: Internal Scale 2 10: External Scale 11: Force Balance
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
SCALE 4: \\
00: Internal Scale 1 01: Internal Scale 2 \\
10: External Scale \\
11: Force Balance
\end{tabular}} \\
\hline \multicolumn{7}{|l|}{ALL SCALES ARE UNIQUE AND EACH MUST HAVE THEIR OWN CHANNEL LOCATION.} \\
\hline 18
0000 & \begin{tabular}{l}
Set Point TTL Output \\
0 : Active Low \\
1: Active High
\end{tabular} & \multicolumn{3}{|l|}{Number Of Set Point: 000: 2 Set Points 001: 3 Set Points} & \multicolumn{2}{|l|}{010: 4 Set Points 011: 5 Set Points} \\
\hline 19
0000 & \multicolumn{2}{|l|}{Display "Not F" Message For Items Not Stored In Memory 0 : Yes 1: No} & \multicolumn{2}{|l|}{\[
\begin{array}{|l|}
\hline \text { Link To IMS } \\
0: \text { : No } \\
1: \text { Yes } \\
\hline
\end{array}
\]} & Not Used & Not Used \\
\hline
\end{tabular}

Weight and Measures Specification : To enter this mode, enter the numeric key 1,4,2
\begin{tabular}{|c|c|c|c|c|}
\hline Spec No. & Bit 3 & Bit 2 & Bit 1 & Bit 0 \\
\hline 20 & \[
\begin{array}{|l|l|}
\hline & \text { Minimum } \\
00: 2 \\
01: 1
\end{array}
\] & splay (Scale 1)
\(10: 5\)
\(11: 10\) & \begin{tabular}{ll} 
& \\
\(00: 2\) & Minim \\
\(01: 1\) & \\
& \\
\hline
\end{tabular} & \[
\begin{aligned}
& \text { m Display (Scale 2) } \\
& 10: 5 \\
& 11: 10
\end{aligned}
\] \\
\hline 21 & Not Used & \multicolumn{3}{|l|}{\begin{tabular}{cc} 
& Weight Decimal Point Position (Scale 1) \\
\(\mathbf{0 0 0}: 00000\) & \(011: 00.000\) \\
\(001: 0000.0\) & \(100: 0.0000\) \\
\(010: 000.00\) & \\
\hline
\end{tabular}} \\
\hline 22 & Not Used & \begin{tabular}{ll} 
\\
\(000: 00000\) & Weigh \\
\(001: 0000.0\) & \\
\(010: 000.00\) &
\end{tabular} & \[
\begin{aligned}
& \text { It Decimal Point Po } \\
& 011: 00 \\
& 100: 0.0
\end{aligned}
\] & \[
\begin{aligned}
& \text { ition (Scale 2) } \\
& 100 \\
& 100
\end{aligned}
\] \\
\hline 23
0000 & \multicolumn{2}{|l|}{\begin{tabular}{ll}
\(00: 1 / 10,000\) & \(10: 1 / 2,500\) \\
\(01: 1 / 5,000\) & \(11:\) Not Used
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{array}{ll}
00 \text { : Unlimited } & 10:+-10 \% \text { FS } \\
-10 \% \text { F.S. } \\
01:+-2 \% \text { FS } & \mathbf{1 1} \text { : not avail. }
\end{array}
\]} \\
\hline 24
0000 & \begin{tabular}{l}
Masked Display at Minus Wt. \\
0 : Gross \\
1 : Net
\end{tabular} & \begin{tabular}{l}
Display at Minus Wt. \\
0 :Minus \\
Display \\
1 :Masked
\end{tabular} & \begin{tabular}{l}
Zero Lamp Lighting Method 0 : Gross \\
1 : Net
\end{tabular} & \begin{tabular}{l}
When No AC, Display Mask When Battery Low or No Battery. \\
0 : Yes 1:No
\end{tabular} \\
\hline 25
000 & \begin{tabular}{l}
Scale Starting Method \\
0 : Automatic \\
1 : Manual
\end{tabular} & \begin{tabular}{l} 
IR Mode protected by \\
Span Switch \\
\(0:\) No \\
\(1:\) Yes \\
\hline
\end{tabular} & \begin{tabular}{|l|l|}
\hline Scale Type \\
0 : Single Scale \\
1 : Double Scale
\end{tabular} & \[
\begin{aligned}
& \text { Gross Mode Available } \\
& 0 \text { : Yes } \\
& 1 \text { : No }
\end{aligned}
\] \\
\hline 26
0000 & Zero Tracking When Tare 0: Yes 1:No & \begin{tabular}{l}
Weight Reset when Tare \\
0: Yes 1:No
\end{tabular} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Initial Start Range } \\
& \mathbf{0 0}: \text { Unlimited } 10 \text { : }+-10 \% \text { FS } \\
& -10 \% \text { FS } \\
& \mathbf{0 1}:+-2 \% \text { FS } \quad \mathbf{1 1} \text { : not avail. }
\end{aligned}
\]} \\
\hline 27
0100 & \[
\begin{array}{|l|l|}
\hline \text { Comma Display } \\
0: \text { No } \\
1: \text { Yes } \\
\hline
\end{array}
\] & Digital Tare Setting 0 : No 1 : Yes & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Tare Range } \\
& \mathbf{0 0}: 100 \% \text { FS } 10: 5 \% \text { FS } \\
& \mathbf{0 1}: 50 \% \text { FS } \mathbf{1 1}: \text { not avail. } \\
& \hline
\end{aligned}
\]} \\
\hline 28
0000 & \begin{tabular}{l}
Auto Tare clear when Rezero \\
0 : No \\
1: Yes
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Automatic Unit Weight Clear Condition \\
00 : Over Net 5d and Gross 21d and Weight Stable \\
01 : >= Net 1d and Weight Stable \\
10 : >= Net \(1 d\) and Quantity >0 and Weight Stable
\end{tabular}} & \begin{tabular}{l}
Automatic Unit Weight Clear \\
0 : No \\
1: Yes
\end{tabular} \\
\hline 29
0000 & \begin{tabular}{l}
Digital Tare Rounding \\
0 : Tare Exactly \\
1 : Round to Nearest Increment
\end{tabular} & \begin{tabular}{l|l} 
& Tare Value \\
& Exchange \\
& \(0:\) Yes \\
& \(1:\) No
\end{tabular} & \begin{tabular}{l}
Tare Addition \\
0 : Yes \\
1 : No
\end{tabular} & \[
\begin{aligned}
& \hline \text { Tare Subtraction } \\
& 0: \text { Yes } \\
& 1: \text { No }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{2.0. DMC-290 OPERATIONAL PROCEDURES}

\section*{OPERATION GUIDE IN WEIGHING MODE}

\subsection*{2.1 Tare Reduction}

\subsection*{2.1.1 One Touch Tare Operation}

Display in the weighing mode
Place 0.5 Lb weight on the platter
3 Press the [TARE] key to tare the weight on the platter. Bit 0 and 1 in Spec 27 must be set to appropriate tare range value. (example based on \(\mathbf{1 0 0 . 0 0} \mathbf{l b}\). scale)
4 Remove the weight from the platter

\subsection*{2.1.2. Digital Tare Operation :}

1 Display in the weighing mode.
2 Example press [50] \(\not \subset\) key
3 Press[CODE] key.
4 Keyboard enter the desired tare weight. Example type [0] [.] [5] [0]
5 Press the [TARE] key. Bit 0 and 1 in Spec 27 must be set to appropriate value. Bit 2 in Spec 27 must be set to '1'.

\subsection*{2.2.1 Using Preset Keys and Extended Codes}

To Select Scale And Reset Zero Point. Press [SCALE ] Key And Press [REZERO] Key.
2 Select hot key [1] thru [9]. Example press [25\$/4] key
3a To Enter Tare Value (one touch tare) (if needed). Place Empty Container On Platter And Press [TARE] Key.
2b To Enter Tare Value (digital tare) (if needed). Place Full Container On Platter And Keyboard Enter The Known Tare Weight. (Example Press: [0] [•] [2] [5] [5], Then Press [TARE] Key.

4 To Accumulate Value / \$. With The First Quantity On Scale, Press [+] Key. The Display Returns To Weighing Mode . Place The Second Quantity On Scale And Count Them. Repeat The Procedure Until All Coins Have Been Counted. If A Mistake Is Made During Accumulation, Press [-] Key.

Note: quarters, nickels, and dimes etc. may be accumulated by selecting the desired hot key placing that denomination on scale and pressing [ + ] key. When all coins have been counted pressing the [ \(*\) Prog] key will end accumulation and the total will be printed when using the BCP-30 printer.
5 To End Accumulation. Press [ \(\boldsymbol{*}\) Prog] Key.
Note: Extended Codes may be used at any time
Note: (example based on \(\mathbf{1 0 0 . 0 0} \mathbf{l b}\). scale)

\subsection*{2.2.2. Using Extended Code Entry}

2 To Select Extended Code. Type Extended Code (Up To Three Digits) Example Press [CODE] [1] [2] [3], Then Press [CODE] Key.
3 Place coins or tokens on the scale. The scale displays the value / \$ for the coins or tokens placed on the platter
4.0. MAINTENANCE MODE
4.1. Ver. 2.90 Customer Specification : To enter this mode, press the following key sequence : \([R][1][4][1]\) ie. Numeric keys \(1,4,1\) while holding Rezero key.
\begin{tabular}{|c|c|c|c|c|}
\hline Spec No. & Bit 3 & Bit 2 & Bit 1 & Bit 0 \\
\hline 0000 & \[
\begin{array}{|l|}
\hline \text { Tare When Change } \\
\text { Scale } \\
0=\text { Hold Tare } \\
1=\text { Transfer Tare }
\end{array}
\] & \begin{tabular}{l}
Digital Tare Entry \(0=\) Replace \\
1 = Accumulate
\end{tabular} & \[
\begin{aligned}
& \hline \text { Terminator } \\
& 0=\text { Carriage Return } \\
& 1=\text { Carriage Return } \\
& \text { Linefeed } \\
& \text { (RS-232only) PC } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{l}
\text { Weighing unit } \\
0=\text { U.W. per/ } \\
\text { 1=A.P.W. }
\end{array}
\end{aligned}
\] \\
\hline 0000 & \multicolumn{4}{|l|}{} \\
\hline 1000 & \multicolumn{2}{|l|}{} & Kg/Lb Lamp Inhibit 0: No 1:Yes & \begin{tabular}{l}
Inventory Disp by Gross Key \\
0: Gross Disp 1: No of Invnt
\end{tabular} \\
\hline 0000 & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { "D" Sub RS-232 port commands } \\
& 00=\text { standard RS-232 (F.B.) } \\
& 01=\text { ctm-290 (slip printer) } \\
& 10=\text { tm-200 ( with cutter command) } \\
& 11=\text { tm-200 (with feed for tear off) }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Print commands
\(00=\) bcp-30 (barcode printer) (F.B.)
\(01=\) ctm-290 (slip printer)
\(10=\mathrm{tm}-200\) (with cutter command)
\(11=\mathrm{tm}-200\) (with feed for tear off)} \\
\hline 4
1001 & Set New Item Code during Normal Mode 0: Yes 1: No & \multicolumn{2}{|l|}{\[
\begin{array}{cc} 
& \text { Insufficient sample Level } \\
\mathbf{0 0}: 0.1 \% & \mathbf{0 1}: 0.2 \% \\
\mathbf{1 0}: 0.0 \%
\end{array}
\]} & \[
\begin{aligned}
& \text { Negative Counting } \\
& 0: \text { No } \\
& 1: Y e s \\
& \hline
\end{aligned}
\] \\
\hline 1011 & \multicolumn{2}{|l|}{\begin{tabular}{|l|l|}
\hline Sampling time for & Unit Wt. Auto \\
Unit Weight & Recomputing \\
Calculation & \(0:\) No \\
\(0: 10\) times \(1: 5\) times \\
\(1:\) Yes \\
\hline
\end{tabular}} & \multicolumn{2}{|l|}{Date Order 00:Year, Month, Date 01: Date, Month, Year 11: Month, Date, Year} \\
\hline 1101 & \begin{tabular}{l}
Display Accuracy of Unit Weight \\
0 : No, 1 : Yes
\end{tabular} & \begin{tabular}{l}
Clear All Input \\
Key in One Touch \\
\(0=\) Yes, \(1=\) No
\end{tabular} & \[
\begin{aligned}
& \text { RS232 Continue } \\
& \text { Sending High } \\
& 0=\text { High } \\
& 1=\text { Low }
\end{aligned}
\] & Auto ShiftTo Next Position After Two Key of Teraoka Code Entry
\[
0=\text { No }!=\mathrm{Yes}
\] \\
\hline 7
0000 & \[
\begin{array}{|l}
\hline \text { Set Point Buzzer } \\
0: \text { Yes } 1: \text { No }
\end{array}
\] & \[
\begin{aligned}
& \hline \text { Set Points: } \\
& \text { 0: Latch } \\
& \text { 1: No Latch } \\
& \hline
\end{aligned}
\] & \multicolumn{2}{|l|}{\begin{tabular}{ll} 
& \multicolumn{1}{c}{ Set Point Type } \\
\(\mathbf{0 0}\) : \%Quantity & \(\mathbf{1 0}:\) Quantity \\
\(01: \% W e i g h t ~\) & \(11:\) Weight
\end{tabular}} \\
\hline 0010 & RS-232C Connection (Force Balance) 0: No 1: Yes & RS-232C (FB) Data Length (Optional) \(0: 7\) bits1: 8 bits & \multicolumn{2}{|l|}{\begin{tabular}{ll} 
& RS-232C (FB) Baud Rate \\
& (Optional) \\
00:1200 & \begin{tabular}{ll}
104800 \\
01:2400 & 119600
\end{tabular} \\
\hline
\end{tabular}} \\
\hline 0111 & \begin{tabular}{l}
\(0:\) No \(1:\) Yes \\
RS-232C (FB) \\
Stop Bit \\
(Optional) \\
\(0: 1\) bit \(1: 2\) bits \\
\hline
\end{tabular} & \begin{tabular}{l}
Force Balance Type \\
0: SHG-300 \\
1: TP-200
\end{tabular} & \multicolumn{2}{|l|}{} \\
\hline 10
0111 & \begin{tabular}{|l|l|}
\hline \(0: 1\) bit \(1: 2\) bits \\
\hline RS-232C \\
Connection \\
(PC \(/\) Printer) \\
\(0:\) No, \(1:\) Yes \\
\hline
\end{tabular} & \begin{tabular}{l}
RS-232C (PC/PRN) \\
Data Length (Optional) \\
\(0: 7\) bits \(\mathbf{1 : 8}\) bits
\end{tabular} & \begin{tabular}{lr} 
& RS-23 \\
\(00: 1200\) & \(10: 4\)
\end{tabular} & 2 C (PC/PRN) Baud Rate
(Optional)
800 \\
\hline 11 & \multirow[t]{2}{*}{\begin{tabular}{l|l}
\begin{tabular}{l} 
RS-232C \\
(PC/PRN \\
Stop Bit
\end{tabular} & \begin{tabular}{l} 
PR \\
\(\mathbf{0}:\) \\
1:
\end{tabular} \\
\begin{tabular}{l}
\(\mathbf{0}: 1\) bit \\
bits
\end{tabular} & \begin{tabular}{l}
\(\mathbf{0}\) \\
co
\end{tabular} \\
& \begin{tabular}{l}
\(\mathbf{1}\) \\
on
\end{tabular}
\end{tabular}} & \begin{tabular}{l}
PRINTER: \\
Eltron \\
BCP-300 or Epson
\end{tabular} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \mathbf{0 0} \text { : No } \\
& 01 \text { : Odd }
\end{aligned}
\]} & \begin{tabular}{l}
RS-232C (PC/PRN)Parity Bit \\
10 : Not Used
\end{tabular} \\
\hline 0100 & & utput on RS-232 na delimited file aper tape output inter port (in prog mo & & \(10:\) Not Used
11 : Even \\
\hline 12
1000 & \multicolumn{2}{|l|}{\begin{tabular}{l}
RS-232 (PC/PRN) Output 00 : Not Available \\
01 : When Counting Condition(PC) \\
10 : By * Key \\
11 : In Both Cases (DP122)
\end{tabular}} & Eltron format 0 : Eltron fixed format 1 : custom download format & \begin{tabular}{l}
RS232C (PC/PRN) With Header \\
0: Yes \\
1: No
\end{tabular} \\
\hline 13
0001 & \begin{tabular}{l}
RS232(PC/PRN) Header: \\
o: Code
\end{tabular} & \multicolumn{3}{|l|}{} \\
\hline 14
1010 & RS-232C Connection (Barcode Pen) 0 : No 1: Yes & RS-232C (BCP) Data Length (Optional) \(0: 7\) bits1:8 bits & \multicolumn{2}{|l|}{\begin{tabular}{lc} 
& RS-232C (BCP) Baud Rate \\
(Optional) \\
\(00: 1200\) & \(\mathbf{1 0}: 4800\) \\
\(01: 2400\) & \(\mathbf{1 1}: 9600\)
\end{tabular}} \\
\hline
\end{tabular}

14

\subsection*{3.4. Delete Item Memory}

\section*{Press [MODE] key}

2 Enter [ \(\boldsymbol{0}][\boldsymbol{[}][0]\) while pressing [REZERO] key
3 Press [CLEAR] key to complete deletion of all memories

\section*{Note:}

Delete All Value / \$ In Stock
Delete All Item Unit Weight:
Delete All Item Tare Weight:
Delete All Item Part Number:
Delete All Item Set Point:
Delete All Item Name:
Reset SEQ No:
Delete All Set Point (Not Item):
\[
\begin{aligned}
& \text { Press }[\bullet][\bullet][1] \\
& \text { Press }[\bullet][\bullet][2] \\
& \text { Press }[\bullet][\bullet][3] \\
& \text { Press }[\bullet][\bullet][4] \\
& \text { Press }[\bullet][\bullet][5] \\
& \text { Press }[\bullet][\bullet][6] \\
& \text { Press }[\bullet][\bullet][7] \text { (Use for Printer BCP-300) } \\
& \text { Press }[\bullet][\bullet][+]
\end{aligned}
\]

After Code entry. (Hot Key or Extended Code see 2.2)
2 Press the [ + ] key. The Total is displayed in the Value / \$ Display.
3 The memory lamp will glow. After a moment the scale will resume operation mode.
4 Place more coins on the scale.
5 Press the [+] key. The Total is displayed in the Value / \$ Display.
6 The memory lamp will glow. After a moment the scale will resume operation mode.

\section*{Note: (example based on 100.00 lb . scale)}

\subsection*{2.4 Subtraction/Reduction Operation :}

When Spec Auto Exit From Accumulation is enable.
The Scale will automatically go back to Weight Mode after the Accumulation Mode
1 Display in the weighing mode with memory lamp glowing. From previous operation (See 2.3.)
2 Press the [+] key. The Total Is Displayed in the Value / \$ Display.
3 Remove some coin from scale. Take only the coin you wish to subtract.
4 Pressing the [-] key deducts the 290.00 in the Value / \$ Display from the previous Total of 1330.00 to give us a total of 1040.00.
5 The memory lamp will glow. After a moment the scale will resume operation mode.
2.3 Accumulation Operation : When Spec 32 bit1,Default Setting, (Auto Exit when accumulation) is enabled,

\subsection*{3.5. Check/Set Time And Date}

Press [MODE] key
2 Press [-] Key to Check the date and time
3 Press [-] Key
4 Enter Month Day and Year to Program the date
5 Press [-] key to Program the day
6 Enter Day, 0:Mon,1=Tue....6=Sat
7 Press [-] key
8 Enter Time to Program the time
9 Press [*] key to store the setting. OR press [-] key to bypass the storing.

\subsection*{2.5. Clearing of Accumulated Data :}

From previous operations (See 2.3. \& 2.4.)
2 Pressing the [ \(\left.*_{\text {PROG }}\right]\) key, clears the accumulated total.

\section*{Note: (example based on \(\mathbf{1 0 0 . 0 0} \mathbf{~ l b}\). scale)}

\subsection*{2.6. Clearing A Code :}

Remove coin form scale
2 Pressing the [CLEAR] key, clears the Denomination

\subsection*{2.7. Scale \(\mathbf{1} \leftrightarrow 4\) Operation :}
1. Display in the weighing mode
2. Pressing [SCALE] key changes from Scale 1 to Scale 2.
3. Pressing [SCALE] key changes from Scale 2 to Scale 3
4. Pressing [SCALE] key changes from Scale 3 to Scale 4.
5. Pressing the [SCALE] key again changes back to Scale 1

Note: Default Position: The Position for Scale 1 to scale 4 can be set in Spec
Scale 1: Internal Scale \(1 \quad\) Scale 3: External Scale
Scale 2: Internal Scale 2 Scale 4: Force Balance (not used)
* NOTE: ONLY SCALES PRESENT WILL BE SELECTED. EX. 2 SCALE SYSTEM SWITCHES BETWEEN SCALE 1 AND 2 ONLY.
3.2.5 Set Point Programming by Weight or by Value / \$

Set Point Weight (See Note Below) Set bit 0 and 1 of Spec 7 to 1-1
Set Point Quantity (See Note Below) Set bit 0 and 1 of Spec 7 to \(1-0\)
1 Display in the weighing mode
2 Press the [MODE] key to go into the programming mode.
3 Press [+] key to go into Set Point Programming Mode.
4 Type [2][.][0][0] (example is based on weight). To Enter the Weight value for Set Point 1 using the [Numeric] keys depending on the capacity of the scale. Please see the note below.
5 Press the [+] key to program Set Point 2.
6 Type [3][.][0][0]. To Enter the weight value for Set Point 2 using [Numeric] keys. Please see the note below.

7 Press the [+] key to program set point 3 thru 5 or exits from the Set Point Programming mode (depends on spec 18), but remains in the Programming mode.
8 Pressing the [MODE] key exits from Programming mode and returns to Weighing mode.
Note: (example based on 100.00 lb . scale)

Note: The DMC-290 can program up to five set points by repeating the process 3 through 5 . Spec 18 bit \(0-1-2\) determine the number of set points. The five set points are TTL Output for Value / \$ or Weight. These five set points may be programmed 1 through 5 low to high or 1 through 5 high to low.

\subsection*{3.3. Check Item Code In Memory}

1 Press [MODE] key
2 Press [CODE] key
3 Press [-] key to check entered code
4 Press [-] key to check entered code prior to "CH 3"
5 Press [MODE] key to return to the first step

\subsection*{3.2.1. Set Point Programming by Upper and Lower Limit of Value / \(\$\)}

Set Point 1 : Quantity, Set Point 2 : Quantity :Set bit 0 and 1 of Spec 7 to 10
1 Display in the weighing mode
2 Press the [MODE] key to go into the programming mode.
3 Press [+] key to go into Set Point Programming Mode.
4 Type [2][0][0][0][0]. To Enter the Quantity value for Set Point 1 using the [Numeric] keys. Please see the note below. 5 Press the [+] key to program Set Point 2.
6 Type [1][0][0][0][0]. To Enter the Set Point 2 value using the [Numeric] keys. Please see note below. Note: (example based on \(\mathbf{1 0 0 . 0 0 ~ l b}\). scale)

\subsection*{3.2.2. Set Point Programming by Upper and Lower Limit of Weight is available, not shown here.}

Set Point 1 : Weight (See Note Below) Set Point 2 : Weight (See Note Below) Set bit 0 and 1 of Spec 7 to 11
Note : Set Point1 : Must be a weight value depending on the capacity of the scale. Set Point2 : Weight value up to the capacity of the scale but Set Point 2 value must be less than Set Point 1 value
 Set Point 1 value. Ex: Suppose Set Point 1=999999 Set Point 2 cannot be set more than \(100 \%\).

\subsection*{3.2.4. Set Point Programming by \%Weight is also available, not shown.}

Set Point 1 : Weight (See Note Below) Set Point 2 : \%Weight (See Note Below) Set bit 0 and 1 of Spec 7 to 01
Note: Set Point 1 : Must be a weight value depending on the capacity of the scale. Set Point 2 : Percentage value up to \(999 \%\), but set according to Set Point 1 value. Ex: Suppose Set Point 1=5.0000 (capacity of the scale), Set Point 2 cannot be set more than \(100 \%\).

2 Example press quarter [25/4] key
3 Place coin on the scale.
4 Press [*PROG] key to update memory. All displays will show dashes briefly. Renew "VALUE / \$ IN STOCK" by adding the Quantity
6 Press [NET /GROSS] Key to Check VALUE / \$ in Stock
7 Press [NET/GROSS] Key
8 Depress [CODE] key until Indicator OUT is lit
10 Press [*PROG] key to update memory. All displays will show dashes briefly. Renew "VALUE / \$ IN STOCK" by removing the Quantity

11 Press [NET /GROSS] Key to Check VALUE / \$ in Stock
12 Press [NET/GROSS] Key
Note: (example based on \(\mathbf{1 0 0 . 0 0} \mathbf{~ l b}\). scale)

\footnotetext{
11
}

\subsection*{3.0. PROGRAMMING MODE:}

\subsection*{3.1. Data Setting (Program Mode)}
3.1.1. Example 1 : Program Hot Keys

To Enter PROGRAM Mode. Press [MODE] key
2 Select hot key to program. Example [1] thru [9],
3 Press [CODE] Key. (NOTE: If memory location is already programmed the display will show (CLEAr) press [CLEAR] key to delete. Press [CODE] Key to view or change existing data.
4a Compute Unit Weight, Place 1000 To 2000 Coins On Scale, Keyboard Enter The Number Of Coins Placed On The
Scale, Press [PIECES] Key.

See Note 1
4b Enter Unit Weight, Press [1] [2] [•] [3] [6] [5] (for Quarters), Press [UNIT WEIGHT] key.
5 To Enter Set Point Mode Press [ + ] key.
See Note 2
See Note 2
See Note 2
Press [ + ] Key.
See Note 2
Press [+] Key. See Note 2

8 To Enter Denomination Value, Example : (for pennies), press [1], then press [LB/KG] key (for quarters), press [2] [5], then press [LB/KG] key. Note: Do not use decimal point. Denomination value must be entered after set points.
9 To Enter Denomination Name, Example: penny, nickel, dime, or peso. Press [-], using TC Code chart enter Denomination Name

See Note 2
10 To Store Denomination Name, Press [ \(\left.*_{\text {Prog }}\right]\) Key To Store Denomination Name See Note 2
11 Enter Tare value (if desired), Place empty container on scale and press [TARE] key Or Keyboard enter known tare value and press [TARE] key

See Note 2
12 To Store Data. Press [ \(\boldsymbol{*}_{\text {Prog }}\) Key To Store Data.
13 To Exit Program Mode. Press [MODE] Key.
Note 1:The accuracy of the computation can be improved by increasing the sample size

\section*{Note 2: Item \#5, 6, 7, 9, 10 \&, 11 May Be Omitted To Fit Your Needs}

Note 3: Item \# 1, 2, 3,4, 8, 12 \& 13 Are Necessary To Program ID Code Into Memory.

\section*{SE] key}

2 To Select extended code number. Example type [1] [2] [3]
3 Press [CODE] Key. (NOTE: If memory location is already programmed the display will show (CLEAr) press [CLEAR] key to delete. Press [CODE] Key to view or change existing data.
4a Compute Unit Weight, Place 1000 To 2000 Coins On Scale, Keyboard Enter The Number Of Coins Placed On The
Scale, Press [PIECES] Key OR

4b Enter Unit Weight, Press [1] [2] [•] [3] [6] [5] (for Quarters), Press [UNIT WEIGHT] key.
5 To Enter Set Point Mode Press [+] key.
6a To Enter Setpoint 1, Enter Setpoint 1 (Example \$10.00) Type [1] [0] [0] [0], See Note 2

\section*{Press [ + ] Key.}

See Note 2
7a Enter Setpoint 2, Enter Setpoint 2 (Example \$20.00) Type [2] [0] [0] [0], ], See Note 2
7 b Press \([+]\) Key. See Note 2

8 To Enter Denomination Value, Example : (for pennies), press [1], then press [LB/KG] key (for quarters), press [2] [5], then press [LB/KG] key. Note: Do not use decimal point. Denomination value must be entered after set points.
9 To Enter Denomination Name, Example: penny, nickel, dime, or peso. Press [-], using TC Code chart enter Denomination Name
10 To Store Denomination Name, Press [ \(\boldsymbol{*}\) Prog ] Key To Store Denomination Name See Note 2
11 Enter Tare value (if desired), Place empty container on scale and press [TARE] key Or Keyboard enter known tare value and press [TARE] key

See Note 2
12 To Store Data. Press [ \(\boldsymbol{*}_{\text {Prog }}\) ] Key To Store Data.
13 To Exit Program Mode. Press [MODE] Key.
Note 1:The accuracy of the computation can be improved by increasing the sample size Note 2: Item \# 5, 6, 7, 9, 10 \& 11 May Be Omitted To Fit Your Needs.
Note 3: Item \# 1, 2, 3,4, 8, 12 \& 13 Are Necessary To Program ID Code Into Memory.```

