# UMC555, 444 <br> Digital Weight Indicators 

## Installation Manual



$$
0^{0^{0^{\circ}}}
$$

# UMC555 \UMC444 <br> <br> TABLE OF CONTENTS 

 <br> <br> TABLE OF CONTENTS}

## SECTION

DESCRIPTION

INTRODUCTION

SPECIFICATIONS

INSTALLATION AND WIRING

DIGITAL CONFIGURATION

ANALOG CALIBRATION

SERIAL OUTPUT

OPTIONS

RECOMMENDED SPARE PARTS

## SECTION 1 <br> GENERAL INTRODUCTION

This Digital Weight Indicator is a microprocessorbased instrument specifically designed to meet the needs of the scale industry.

## FEATURES INCLUDE:

* Analog and Digital Calibration via Front Panel Entry.
* NON - VOLATILE memory for Configuration, Auto Zero, Auto Tare, PAZ values.
* 10,000 Displayed Graduations; 100,000 Internal .
* Analog Sensitivity - To 0.3 microvolts/graduation .
* 10 Updates/Second at Full Scale, with Selectable Digital Averaging and Analog Active 5 HZ filter for smooth response.
* Automatic Zero and Span Temperature Compensation.
* Standard AZM (Zero Tracking) and PAZ (Pushbutton Auto Zero) features.
* Bidirectional Serial Port \#1 (RS232C or 20mA I Loop); Simplex Serial Port \#2 (RS232C and 20mA I Loop).
* Standard "Net/Gross" and "Auto (Stored) Tare" features.
* Excitation for eight (8) 350 - ohm load cells at 10VDC.
* Operable from 117/237 VAC or external 12 VDC.
* $\mathrm{lb} / \mathrm{kg}$ conversion for weight and tare values.
* Six (6) digit LED display - 0.6 inch Digits
* Tilt - Stand Kit for wall or ceiling mounting.
* Panel Mount Kit.


## POWER-UP INDICATION:

THE UNIT PROVIDES AUTOMATIC DISPLAY CHECKING DURING "POWER-UP" BY ROTATING AN " 8 " FOR VISUAL VERIFICATION OF DISPLAY OPERATION. IN ADDITION, THE SOFTWARE "SET" ,"VERSION", AND OPTION STATUS IS SUPPLIED.

FORMAT: "Pr. -x.y"

EXAMPLE: PROGRAM NO. KBF1921-1 Ver 11 is "Pr.-1.11" in power up message.
OPTION FORMAT: "OPt.---" Where each "-" will be replaced with a corresponding number to the enabled option.

## FOR SERVICE CONTACT:

## MODEL NUMBER GUIDE



LOAD CELL TERMINATION/SHIELDING $\qquad$
A. Standard
C. RFI - Shielded


## SECTION 2 <br> SPECIFICATIONS

| LOAD CELL EXCITATION .... | 10VDC Fixed, Short-Circuit Proof, 240 mA max (8, 350-ohm Load Cells) |
| :---: | :---: |
| LOAD CELL CABLING . | 4 - Wire std, 6 - Wire (Remote Sensing) with PC trace cuts |
| ANALOG SIGNAL INPUT ......... | $0.7 \mathrm{mV} / \mathrm{V}$ to $3.2 \mathrm{mV} / \mathrm{V}$ |
| ANALOG SENSITIVITY ........... | $0.3 \mathrm{uV} / \mathrm{grad}$ max |
| TRANSIENT OVERLOAD ......... PROTECTION | "100VDC without damage-100 uS duration at 2\% duty cycle |
| UPDATE RATE ......................... | 10 update/second, no averaging |
| DISPLAY RESOLUTION .......... | 10,000 Displayed Grads 100,000 Internal Grads |
| DISPLAY INCREMENTS | 1-2-5-10-20-50-100 |
| FULL SCALE CAPACIT | Keyboard selectable to:   <br> 500 1,000 1,500 <br> 2,000 2,500 3,000 <br> 4,000 5,000 6,000 <br> 8,000 10,000  |
| DISPLAY BLANKING | Overload blanking occurs at 103\% of Full Scale Capacity |
| UNDERRANGE BLANKING ..... | (-)400 Displayed Grads, typical |
| LEAD ZERO BLANKING ......... | Standard, per NBS H-44 Requirements |
| DISPLAY .................................. | Six (6) Decades, 0.6 inch LED digits |
| DECIMAL POINT ..................... | Keyboard Selectable to: |
| XXX | XXX XXXXX.X XXXX.XX |
| XXX.XXX | XX.XXXX X.XXXXX |


| FRONT PANEL KEYS ............... | "ZERO", "GROSS/NET", "TARE", "PRINT" |
| :---: | :---: |
| DISPLAY ANNUNCIATORS ..... | "Center Zero", "Net", "lb", "kg", "Motion" (Red Spot LED's) |
| AZM (ZERO TRACK) ................ | "Gross" mode only |
| AZM CAPTURE BAND ............. | Keyboard Selectable to "off", " 0.5, " 1.0, " 3.0 grads |
| AZM APERTURE ...................... | Keyboard Selectable + 1.9\% Full Scale or 100\% Full Scale |
| MOTION BAND ........................ | Keyboard Selectable to " 1 or " 3 displayed grads, 1 sec delay |
| POWER INPUT ......................... | 120/220 VAC, 50-60 HZ, External DC |
| DISPLAY CHECK ..................... | All digit segments and annunciators sequentially illuminated when upon power is applied |
| SERIAL OUTPUTS $\qquad$ RS232 | RS232C or 20mal bidirectional serial port and a Simplex C or 20 mA current loop. |
| ENCLOSURE $\qquad$ <br> (Stand | Mild Steel, NEMA I General Purpose Tilt - Stand Base ard) |
| CASE SIZE | 7.76 in ( 19.7 cm ) wide x 4.81 in ( 12.2 cm ) high x 4.09 in m) deep |
| OPTIONS | KBT7116-5 Rack/Panel Mount Kit |

## DISPLAY MESSAGES

| DISPLAY | EXPLANATION | REMEDY |
| :---: | :---: | :---: |
| Err1 | Loss of Configuration | Enter Configuration Mode and Reconfigure |
| Err1A | Loss of option Enter | Option Mode and |
| Err2 | Loss of Zero Calibration |  |
| Err3 | Loss of Span Calibration |  |
| Err5 | Loss of Auto Tare | Acquire Tare |
| Err6 | Loss of Auto Zero | Acquire Zero |

"ENTER" key pushed when Enter the desired weight value before
Err9 unit is not in the Span pushing "ENTER" key Calibration Mode

Err10H
Err10L
Err10P
Err10-

CAL
Indicates Successful Calibration

OL
$\qquad$ Check Load Cell Wiring

## SECTION 3 <br> INSTALLATION

This digital weight indicator is a general purpose unit designed for a wide variety of weighing and scale related applications. In addition to standard tabletop applications, the unit can be equipped with a tilt-stand kit for angled tabletop uses, for wall mounting, or for ceiling (or cab) mounting applications. Installations requiring rack or panel mounting lend themselves to the KBT7116-5 Panel Mount Kit. Overall dimensions are illustrated in Figures 3.1, 3.2 and 3.3.

## POWER WIRING:

The indicator is designed to be operated from $117 / 237$ VAC, $50-60 \mathrm{hz} \mathrm{AC}$ "Mains" power sources or, with the installation of the KHF8924-1 can be powered from a +12VDC external source. The unit power cord must be plugged into a grounded 3 - wire polarized AC wall socket. All normal wiring and grounding precautions should be observed, including use of a "clean" AC power line and use of transient protection where ever appropriate. (See FIG. 3.5-3.8)

## LOAD CELL WIRING:

The units are equipped with either a 6 - wire Load Cell Connector or a gland tube for load cell cable insertion. The standard unit is wired for 4 - wire (non - remote sensing) load cells; for 6 - wire applications, two (2) PC trace cuts are required. Consult Figure 3.4 for specifics and wiring information.

## SERIAL PORT \#1 AND \#2 WIRING:

The unit has two (2) Serial Ports; Port \#1 is a Duplex (Bidirectional) RS232C or 20 mA Loop, and Port \#2 is a Simplex RS232C and 20 mA Loop output. Details on serial transmission may be found in Section 6; for wiring to the Serial Ports refer to Figures 6.1-6.4.


555

FIGURE 3.1


## 444

FIGURE 3.2

(444 NEMA 4X SS ENCLOSURE)

FIGURE 3.3

## LOAD CELL WIRING:



FIGURE 3.4

NOTE: Traces shown are cut ONLY for six (6) wire (remote sensing) applications.
NOTE: The load cell shield wire should be connected to one of the load cell cable clamp
screws located on the load cell mating connector. CAUTION! Shielding is connected at ONLY one end (typically at the indicator end). If connected at the strain gauge end disreguard illustration below.



## KHA8924 POWER SUPPLY ASSEMBLY WIRING: (AC INPUT)

FIGURE 3.5


KGH8924 POWER SUPPLY ASSEMBLY WIRING: (ACIDC BATTERY CHARGER)

FIGURE 3.6

KHF8924 POWER SUPPLY ASSEMBLY WIRING: (EXTERNAL DC SUPPLY)



$$
9
$$

KGY8924 CPU ASSEMBLY INPUT POWER WIRING :


FIGURE 3.8

## CONVERTING FROM 117VAC TO 217VAC:

## CAUTION! THIS SHOULD ONLY BE PREFORMED BY AUTHORIZED SERVICE PERSONNEL - INSTRUMENT WARRANTEE MAY BE VOIDED

## 1. REMOVE POWER FROM UNIT!

2. Remove rear outer case of unit.
3. Remove rear connector bracket and four standoffs.
4. Remove Power Supply assembly.
5. Remove protective insulator from solder side of assembly.
6. Cut circuit traces between E1/E2 and E3/E4 for KHA8924 assembly or between E6/E7 and E8/E9 for KGH8924 assembly.
7. Using properly insulated wire with a min. size of \#22AWG add jumper E2 to E4 on KHA8924 assembly or E7 to E9 on KGH8924 assembly. (See FIGURES 3.9 \& 3.10 below)
8. Replace protective insulator.
9. Reassemble unit, test, and label unit for 217 VAC .
10. Change power cord.


# danvertine fram 117N ac m Zitv ac <br>  <br>  ㅁRCUT SDE 

FIGURE 3.9
FIGURE 3.10

## SECTION 4 <br> CONFIGURATION

Prior to calibration, the Digital Weight Indicator must be configured, or given its set of

operating parameters. To configure the unit :
A. Unscrew the two (2) knurled captive fasteners on the bar of the Front Panel and drop the bar down to expose the four (4) program switches in the center and the Dead Load adjustment potentiometer.
B. Close (to the right) Switch \#2, which is marked "CONF".
C. The display is used to prompt the operator as follows:

The PARAMETER IDENT is a two digit number (1-15). The SELECTED DATA is a number or display symbol which represents the parameter data being entered into the unit's configuration data. See configuration table for settings.
D. If the SELECTED DATA is correct, push the "ZERO" ("PARAMETER SELECT") key to rotate to the next parameter. The data is automatically entered in SRAM when the parameter number is changed.
E. If the SELECTEDDATA is not correct, push the "NET/GROSS' ("DATA SELECT") key until the appropriate data display appears. Then push the "ZERO" ("PARAMETER SELECT") key. Continue until all parameters have been selected.
F. Open (to the left) Switch \#2. The display will return to a normal display mode. (NORM = S1-1,2,3 open)

## DIGITAL CONFIGURATION PARAMETERS

NOTE: SCALE CAPACITY = DISPLAYED GRADS X RESOLUTION

| PROMPT | PROMPT DISPLAY | INTERPRETATION |
| :---: | :---: | :---: |
| 1 |  | DISPLAYED GRADUATIONS  <br> 500 Displayed Graduations  <br> 1,000 Displayed Graduations  <br> 1,500 Displayed Graduations $\quad 2,000$  <br> Displayed Graduations $\quad 2,500$ Displayed  <br> Graduations $\quad$ 3,000 Displayed Graduations  <br> 4,000 Displayed Graduations  <br> Graduations $\quad$ 5,000 Displayed  <br> 8,000 Displayed Graduations  <br> Displayed Graduations  |
| 2 | $\begin{array}{cccc} 2 & 1 & 2 & 2 \\ 2 & 5 & 2 & 10 \\ 2 & 20 & 2 & 5 \\ 0 & 2 & 10 & 0 \\ \hline \end{array}$ | DISPLAY RESOLUTION <br> "lb" or "kg" BASE \| "kg" conversion |
| 3 | $\begin{array}{cccc} 3 & 0 & 3 & \\ 3 & 0.0 \\ 00 & 30.0 & 3 & 0.0 \\ 0 & 30.0 & 0 & 0 \end{array}$ | DECIMAL POINT |
| 4 | Automatically set | $\begin{aligned} & \text { SPAN SELECTION } \\ & \text { "Low Span" }(1.7 \mathrm{mV} / \mathrm{V}-3.0 \mathrm{mV} / \mathrm{V}) \\ & \text { "High Span" }(0.6 \mathrm{mV} / \mathrm{V}-2.0 \mathrm{mV} / \mathrm{V}) \\ & \hline \end{aligned}$ |
| 5 | $\begin{array}{ccccc} 5 & 1 & 5 & & 2 \\ 5 & 4 & 5 & 8 \\ 5 & 16 & 5 & 3 \\ 2 & 5 & & \text { A 1 } & \\ & & & \end{array}$ | DIGITAL AVERAGING    <br> AVERAGING $\mid$ UPDATE RATE    <br> 10 per second None   <br> 2 5 per second   <br> 4 2.5 per second   <br> 8 1.25 per second   <br> 16 2 Seconds   <br> 32 3 Seconds   <br> $1-2$ Variable   <br> $2-4$ Variable   |


| PROMPT | PROMPT DISPLAY | INTERPRETATION |
| :---: | :---: | :---: |
| 6 | $\begin{array}{cccc} 6 & \text { o F F } & 6 \\ 0.5 & 6 & 1 & 6 \\ 3 & & & \end{array}$ | AZM CAPTURE BAND <br> AZM "Off" <br> " 0.5 Displayed Graduations <br> " 1.0 Displayed Graduations <br> " 3.0 Displayed Graduations |
| 7 | $\begin{array}{ll} 7 & 1.9 \\ 7 & \text { F S } \\ \hline \end{array}$ | AZM/PAZ APERATURE <br> " 1.9 \% Full Scale Capacity <br> 100 \% Full Scale Capacity |
| 8 | $\begin{array}{lc} 8 & \text { o F F } \\ 8 & 1 \\ 8 & 3 \\ \hline \end{array}$ | MOTION BAND <br> NO MOTION INHIBIT <br> " 1 Displayed Graduations <br> " 3 Displayed Graduations |
| 9 | $\begin{array}{cccc} 9 & \mathrm{Lb} & 9 & \mathrm{~K} \\ \mathrm{G} & 9 & \mathrm{C} \text { on } \end{array}$ | lb/kg BASE/CONVERSION <br> "lb" Base - No Conversion <br> "kg" Base - No Conversion <br> "lb/kg" Conversion |
| 10 | $\begin{array}{cc} 10 & \text { o F F } \\ 10 & \text { o n } \\ \hline \end{array}$ | "G - T - N" NET PRINTOUT <br> Net Weight Print Only <br> "G - T - N" Print in Net Mode |
| 11 | $\begin{array}{ll} \text { 11.P 1.o F } \\ \text { 1.C o } & \\ \text { 11.P 1.d E } & \\ \hline \end{array}$ | SERIAL PORT \#1 - COMM MODE <br> Serial Port \#1 "Off" <br> Continuous Output Mode <br> Demand Print Mode |
| 12 | $\begin{aligned} & \text { 12.P 1.S i } \\ & \text { 12.P 1.d U } \end{aligned}$ | PORT \#1 - SIMPLEX/DUPLEX Simplex Duplex Operation (Note \#1) Operation (Note \#2) |
| Note \#1 | $\begin{aligned} & \text { 13.P } 1.12 \\ & \text { 13.P } 1.24 \\ & \text { 13.P } 1.48 \\ & \text { 13.P } 1.96 \\ & \hline \end{aligned}$ | SERIAL PORT \#1 - BAUD RATE |
| 14 | $\begin{array}{ll} \text { 14.P 2.o F } & \text { 14.P } \\ \text { 2.Co } & \\ \text { 14.P 2.d E } & \end{array}$ | SERIAL PORT \#2 - COMM MODE <br> Serial Port \#2 "Off" <br> Continuous Output Mode <br> Demand Print Mode |
|  | $\begin{aligned} & \text { 15.P } 2.12 \\ & \text { 15.P } 2.24 \\ & \text { 15.P } 2.48 \\ & \text { 15.P } 2.96 \end{aligned}$ | SERIAL PORT \#2 - BAUD RATE |


| PROMPT | PROMPT DISPLAY | INTERPRETATION |
| :---: | :---: | :---: |
| 13 |  | SERIAL PORT \#1 \& 2 - BAUD RATE |
|  | $13 . P-12$ | 1,200 Baud |
|  | $13 . \mathrm{P}-24$ | 2,400 Baud |
|  | $13 . \mathrm{P}-48$ | $4,800 \mathrm{Baud}$ |
|  | 13.P -96 | 9,600 Baud |

Note \#1: If PROMPT \#12 is selected for simplex mode "12.P 1.S i" then PROMPT \#13 baud rate selection is for PORT \#1 only and the baud rate selection for PORT \#2 set in PROMPT \#15.

Note \#2: If PROMPT \#12 is selected for duplex mode "12.P 1.d U" then PROMPT \#13 selects the baud rate for BOTH port \#1 and PORT \#2. No PROMPT \#15 in duplex mode. (See table below for PROMPT \#13 selection in this mode.)

## SECTION 5

CALIBRATION

The indicator must now be calibrated. All zero and span calibration is done from the front panel (Exception - When mounted in a NEMA X4 Enclosure, DEAD LOAD pot (RZ2) and S1 are located on the CPU board (KGY8924- ). The calibration procedure is as follows:
A. Ensure that the unit is correctly wired to a load cell or scale base.
B. Empty the scale.
C. Close (to the right) Switch \#3 ("DEAD LOAD").
D. Adjust the potentiometer marked "DEAD LOAD" to obtain a display reading near "0". Note that turning the potentiometer clockwise results in a more positive (or less negative) weight reading.
E. Open Switch \#3.
F. Close Switch \#1 ("CAL"). The weight may change from its previous reading, which is acceptable. A flashing " C " will appear on the left-most display digit. The four (4) front panel switches now assume the following functions:


| EERO <br> CAL | DIGIT SELECT | $\begin{aligned} & \text { DIGIT } \\ & \text { INCR } \end{aligned}$ | SPAN CAL |
| :---: | :---: | :---: | :---: |

## CALIBRATION - CONTINUED

G. Push the "ZERO" key. The display will read "CAL" for a second, and then go to a "0" ("zero") display.
H. Now place a known calibration weight on the scale.
I. The "GROSS/NET" key becomes the "DIGIT SELECT" key; each push of this key will "select" one display digit and "highlight" it by flashing the selected digit, starting from right ("Least Significant Digit") to left ("Most Significant Digit").
J. The "TARE" key becomes the "DIGIT INCREMENT" key; once a digit has been "selected", each push of this key will increment that digit by one, from " 0 " to "9", and then back to "0".
K. After the display has reached a value equal to the weight on the scale, push the "PRINT" ("SPAN CAL") key to enter the span calibration value. The unit should display the " CAL " prompt for a few seconds, and then return to its correct span reading.

## COMPUTATION EXAMPLES:

Desired capacity $=200,000 \mathrm{lbs} \times 20 \mathrm{lb}$
Number of grads $=200,000) 20=10,000$

Therefore in the Configuration Mode PARAMETERS $1 \& 2$ would be set as follows:
PARAMETER " 1 " = 100 (10,000 grads)
PARAMETER "2" = 20 (resolution)

To determine the live load signal range:

Load cells rated at $2 \mathrm{mV} / \mathrm{V}$
$2 \mathrm{mv} / \mathrm{v} \times 10 \mathrm{v}$ (excitation) $=20 \mathrm{mV}$
dead load (est)......... $=5 \mathrm{mV}$
Live Load....... $=15 \mathrm{mV}$
rated at $3 \mathrm{mV} / \mathrm{V}$

$$
\begin{aligned}
3 \mathrm{mV} / \mathrm{V} \times 10 \mathrm{v} & =30 \mathrm{mV} \\
& =7 \mathrm{mV} \\
& =23 \mathrm{mV}
\end{aligned}
$$

Other factors to note:

AZM/PAZ $1.9 \%$ X 200,000 = 3800 lbs

OVERRANGE $103 \% \times 200,000=206,000 \mathrm{lbs}$

## ANALOG SENSITIVITY:

$0.7 \mathrm{mV} / \mathrm{V} \times 10 \mathrm{v}=7 \mathrm{mV}, 7 \mathrm{mV} / 10,000$ grads $=0.7$ microvolts/grad
Sensitivity $=0.3$ microvolts, but to handle H-44 requirements, we need a factor of " 4 ", or 1.2 microvolts/grad. So that even if we can calibrate the lower signal range, we may fail acceptance testing. With this in mind, check for minimum live load of 12 millivolts for 10,000 grads or reduce the number of grads accordingly.

# SECTION 6 <br> SERIAL OUTPUT 

## GENERAL: (BIDIRECTIONAL SERIAL PORT \#1)

The digital weight indicator is equipped with a Duplex (Bidirectional) Serial Communications Port for information transfer to a computer or other "host" device. The Port is normally configured for RS232C operation (Figure 6.1); 20 mA Loop can be selected (Active - Figure 6.2, or Passive Figure 6.3). In addition to weight information transmission, remote control of indicator functions ("Gross", "Net", "Tare", "Zero", "Print") can be performed from a remote device.

WIRING: (PORT \#1 \& \#2)
The normal wiring configuration is RS232C, as shown in Figure 6.1 below. Wiring is done through the Serial Port Opening in the rear of the unit case, to the appropriate terminal on the CPU (see Figure 3.4 for Terminal Strip locations).

WARNING ! When using RS232 Ports \#1 and \#2 - the "signal common" terminal (TB3-1) is not isolated from load cell (-) excitation or digital common. Therefore, care must be taken when interfacing to computers or terminals to avoid ground loop problems!

SERIAL PORT \#1: (RS232C)
TO CONFIGURE PORT \#1 FOR RS232C: JUMPER S3-1 to S3-2


FIGURE 6.1

SERIAL PORT \#1: (ACTIVE 20mA I LOOP)
The Bidirectional Serial Port \#1 may also be operated as an "Active" 20mA Current (I) Loop (Indicator "Active" - Remote Computer or Device "Passive"). Wiring is done per Figure 6.2 below.

TO CONFIGURE PORT \#1 FOR ACTIVE 20mA LOOP:

JUMPER S3-2 to S3-3
JUMPER S2-1 to S2-2


FIGURE 6.2

## SERIAL PORT \#1: (PASSIVE 20mA I LOOP)

If isolation from ground loop problems is desirable, or if reduced power consumption is a consideration, Serial Port \#1 may also be wired as a "Passive" 20mA I Loop (Indicator "Passive" Remote Computer or Device "Active"). Wiring is done as shown in Figure 6.3 below. In addition to Jumper changes, Integrated Circuit U8 MUST BE REMOVED from the CPU. Integrated Circuit U16 ( Part \# KFT1918K ) must be installed for "Passive" transmission of serial data. NOTE THAT IF INTEGRATEDCIRCUIT U8 IS LEFT IN PLACE, THE CIRCUITRYMAY BE DAMAGED!

TO CONFIGURE PORT \#1 FOR PASSIVE 20mA I LOOP (TRANSMIT) OPERATION:
REMOVE U8
ADD U16
JUMPER S2-2 to S2-3

SERIAL PORT \#1: (PASSIVE 20mA I LOOP - continued)


FIGURE 6.3

## GENERAL: (SERIAL PORT \#2)

The digital weight indicator is also equipped with a second Simplex (Output Only) Serial Port \#2. Port \#2 may be configuredas an RS232C output and as an Active 20mA I Loop. Wiring is done per Figure 6.4 below.


FIGURE 6.4

## SERIAL PORTS \#1 AND \#2: (DATA FORMATS)

The prompts shown in Table 6.1 below control the following serial output parameters:

TABLE 6.1

| PARAMETER | PORT \#1 | PORT \#2 |
| :---: | :---: | :---: |
| Serial Enable <br> Demand/Continuous | Prompt \#11 | Prompt \#14 |
| Simplex/Duplex <br> Control | Prompt \#12 | Does Not <br> Apply |
| Baud Rate | Prompt \#13 | Prompt \#13 <br> or <br> Prompt \#15 |

All serial characters are in ASCII and consist of the following:
One (1) Start Bit
Seven (7) Data Bits
One (1) Parity Bit (ODD Parity)
One (1) Stop Bit

## DATA FORMATS:

A. DEMAND MODE - SINGLE LINE (NO "G-T-N" PRINTOUT)
<stx><pol><DATA><sp><LB/KG><sp><GR/NT><cr/lf>
B. DEMAND MODE - THREE LINE "G-T-N" PRINTOUT
<stx><pol><DATA><sp><LB/KG><sp><GR><cr/lf>

2 - second time delay
<stx><pol><DATA><sp><LB/KG><sp><TR><cr/lf>

2 - second time delay

$$
\text { <stx }>\text { pol><DATA }><\text { sp }><\mathrm{LB} / \mathrm{KG}><\text { sp }><\mathrm{NT}><\mathrm{cr} / \mathrm{lf}\rangle
$$

## C. CONTINUOUS OUTPUT - SINGLE LINE (NO "G-T-N") PRINTOUT

* (Computer demand format outputed as shown below when OPTION 2 enabled and selected for "cptr". Will output both single \& (G-T-N) multiple line.)

$$
\text { <stx }><\text { pol }><\text { DATA }><\mathrm{L} / \mathrm{K}><\mathrm{G} / \mathrm{N}><\text { status }><\text { cr/lf }>
$$

## WHERE:

Brackets ("<",">") are shown herein for character definition, and are not sent as a part of a serial transmission.
stx: $\quad$ Non-recording "Start of Text" character (ASCII 02H)
pol: $\quad$ Polarity sign. "SPACE" (ASCII 20H) for positive data or (-) sign (ASCII 2DH) for negative data
sp: $\quad$ Space character (ASCII 20H)
DATA: $\quad$ Seven (7) digit data field including decimal point or fixed (dummy) zero if selected. "Leading Zero Suppression" with leading zeros transmitted as "Space" characters.

LB/KG: Two (2) character field data identification for weight units, in demand (printer) mode.

Weight in LB = "LB" (ASCII 4CH,42H)
Weight in $\mathrm{KG}=$ "KG" (ASCII 4BH,47H)
$\mathrm{L} / \mathrm{K}: \quad$ One (1) character field data identification for weight units in continuous (computer) mode.

Weight in LB = "L" (ASCII 4CH)
Weight in $\mathrm{KG}=$ " K " (ASCII 4BH)

GR/NT: $\quad$ Two (2) character field data identification for weighing mode in demand (printer) mode.

Gross Mode = "GR" (ASCII 47H,52H)
Net Mode = "NT" (ASCII 4EH,54H)
$\mathrm{G} / \mathrm{N}$ : $\quad$ One (1) character field data identification for weighing mode in continuous (computer) mode.

Gross Mode = "G" (ASCII 47H)

Net Mode = "N" (ASCII 4EH)
status: One (1) character field data identification used in the continuous (computer) output mode to identify the status of the indicator display. Characters are listed below in order of priority.

## DESCRIPTION CHARACTER

Calibration/Configuration <C> (ASCII 43H)
Invalid Mode (Dashes on display) <I> (ASCII 49H)
Over/Under Range <O> (ASCII 4FH)
Motion
None of the Above
<M> (ASCII 4DH) (normal display)
<sp> (ASCII 20H)
cr/lf: $\quad$ Two (2) character field, "Carriage Return" (ASCII 0DH), "Line Feed" (ASCII 0AH) indicating "End of Message".

## GUIDELINES FOR SERIAL OUTPUTS

* To comply with Legal - for - Trade requirements, neither port will output data in Demand (Printer) format under the following conditions:
A. Scale in motion
B. Negative Gross Weight, either in "Gross" or "Net" modes.
* Pushing the "PRINT" key on the front panel will cause a serial transmission from either Port \#1 or Port \#2 (or both), if both ports are configured for demand operation. An ASCII <P> command will cause a serial transmission ONLY on Port \#1.


## REMOTE COMMANDS: (SERIAL PORT \#1)

The bidirectional features of Serial Port \#1 can also be used to send remote functional commands to the indicator.

| REMOTE COMMAND | OPERATION | GUIDELINES |
| :---: | :---: | :---: |
| <Z><cr> | Zero Scale | "Gross" Mode, No Motion, Inside PAZ Aperture |
| < $\mathrm{N}><\mathrm{cr}>$ | Go to "Net" | in "Gross" Mode |
| <G><cr> | Go to "Gross" | in "Net" Mode |
| <T><cr> | Auto Tare | "Net" Mode, No Motion |
| <P><cr> | Print | Display, No Motion |

NOTE: Invalid characters or illegal operations (Auto Tare "in motion" or in "Gross Mode", for example) will be "echoed" by <I><cr> and be ignored.

## SECTION 7 <br> OPTIONS

Currently the instrument offers two (2) digitally programmable Options; Option 1 configures the digital weight indicator for interfacing with the Analog Output Module and Option 2 when enabled configures the serial output format for Tag, or for selections between "printer or computer" output formats.


1. To select the OPTIONS mode, close S-2 and S-3.
2. Press "ZERO" key to select between OPTION $1 \& 2$.
3. Use the "GROSS/NET" key to enableldisable OPTIONS $1 \& 2$ (turn on /off).
4. Use the "TARE" key to step through sub-parameters. The "PRINT" key changes data selection for sub-parameters.

## OPTION 1 ANALOG OUTPUT

* Converts serial data into analog: 0-10 vdc or 4-20 ma.
* Directly mounted on the rear of the indicator or operated remotely.
* Self powered, 117/217 VAC provides isolated output
* Mild steel, painted enclosure 7.26 W x $2.06 \mathrm{H} x$
 3.31D, wt.2Lbs
* Automatic data checking/verification
* Serial data "pass-thru"
* Analog output tracks: gross, net, or displayed weight.
* Full digital calibration (instrument front panel).




## GENERAL:

Serial data from the indicator is modified to include scaled information specifically for the analog output module. The standard communications are also included to allow the module to "pass-thru" printer or scoreboard information. If external switches (ZERO, TARE, etc) are desired, utilize the Duplex port of the instrument. Note: the serial "pass-thru" does not have duplex capability. The analog output is fully isolated with its own transformer (power supply) and passive current loop communications. While the analog module can be located remotely up to 1000 ft , the standard package mounts on the rear of the indicator. After wiring and setting the module's baud rate, the remaining setup and calibration is carried out in the host instrument.

TEST MODES: Switch settings are provided to force the analog output to zero, full scale, or provide a continuous sawtooth waveform to facilitate system checking.

ERROR CHECKING: Serial data is continually checked for parity, valid characters, and presence of communications. Loss of data is indicated by forcing the analog output to a minimum value of -0.5 Vdc or 3.2 ma (approx.). If the host is in "overload", the analog output is forced
$5 \%$ over full scale. With the 4-20 ma output, an additional alarm isprovided to detect the lack of current (break) in the loop.

COMMUNICATION VERIFICATION: A led(DS1) is provided on the analog module:
on = communications OK
pulse $=$ communication Errors
off $=$ no power

## CALIBRATION:

Using the host, settings are provided for zero, span, and trim adjustments. The settings are all digital therefore no potentiometers are required. During the trim adjustment, the analog output is forced to the zero/span previously selected in option mode parameters 1.5 and 1.6. While reading the analog output the TRIM is incldec from 0 to $\pm 175$ until the reading agrees with the values entered in 1.5 and 1.6.

## ANALOG MODULE SETUP/WIRING:



3 0-10 VDC OUTPUT
2 GND
1 4-20 MA OUTPUT
4
ALARM

TB2 DESCRIPTION

1 ZERO
2 GROSS/NET
3 TARE
4 START

| 8 | $+20 \mathrm{mal}(\mathrm{RX}+)$ serial |
| :--- | :--- |
| 9 | $-20 \mathrm{mal}(\mathrm{RX}-)$ serial |
| 6 | $+20 \mathrm{mal}(\mathrm{TX}+)$ serial |
| 7 | $-20 \mathrm{mal}(\mathrm{TX}-)$ serial |


| 5 | COMMON |
| :--- | :--- |
| 6 | TX $+($ RS232 $)$ |
| 7 | +5VDC |
| 8 | -20MA (SERIAL) |
| 9 | DEMAND (PRINT) |


| SWITCH 1 | $\underline{\mathbf{1}}$ | $\underline{\mathbf{2}}$ | $\underline{\text { RECEIVE (baud rate from weight indicator) }}$(switch position) |
| :--- | :---: | :---: | :--- |
| $0=$ open | 0 | 0 | 1200 |
| 1 = closed | 1 | 0 | 2400 |
|  | 0 | 1 | 4800 |
|  | 1 | 1 | 9600 |
| SWITCH 1 | $\underline{\mathbf{3}}$ | $\underline{\mathbf{4}}$ | $\underline{\text { TEST MODES }}$ |
|  | 0 | 0 | NORMAL |
|  | 1 | 0 | 0 VDC/ 4 MA |
|  | 0 | 1 | $10 \mathrm{VDC/} 20 \mathrm{MA}$ |
|  | 1 | 1 | $0-10 \mathrm{VDC} / 4-20$ MA RAMP |



## WIRING TO HOST:

## ANALOG MODULE SERIAL 'PASS-THRU':



The serial data from the host is provided as a simplex output with the same format as the host.

Refer to NOTES 1-3 on following page before proceeding!

OPTION 1 CONFIGURATION

| OPTION | PROMPT DISPLAY | INTERPRETATION |
| :---: | :---: | :---: |
| OP. 1 | $\underset{\mathrm{O}}{\mathrm{OP} .1} \mathrm{OP}^{\mathrm{O}} \mathrm{O}^{\mathrm{F}}$ | ANALOG OPTION <br> off <br> on Analog Option enabled |
|  | 1.1dSP <br>  <br> Gr <br> net | Analog tracks Display Analog tracks Gross Weight Analog tracks Net Weight |
| NOTE 1 | $\begin{array}{ll} 1.2 & \mathrm{P} .1 \\ & \mathrm{P} .2 \end{array}$ | Indicator data output on Port1 (to Analog) Indicator data output on Port2 (to Analog) |
| NOTE 1 | 1.3 OFF <br>  dE <br> Co <br>   | Analog module does not pass serial data Analog module outputs serial on demand Analog module outputs serial continuously |
|  | $\begin{array}{ll} 1.4 & 12 \\ & 24 \\ & 48 \\ & 96 \\ \hline \end{array}$ | 1200 baud "Pass-Thru" serial output 2400 baud baud rate selection. 4800 baud 9600 baud |
| NOTE 2 | 1.5 Zr | Enter weight value for analog "ZERO" (See NOTE 2 for procedures) |
| NOTE 2 | 1.6 FS | Use the same procedure as 1.5 to enter analog "FULL SCALE" value. |
| NOTE 3 | 1.7 $\mathrm{Zr} . \mathrm{A}$ | ZERO TRIM, While measuring the analog output, use the "GROSS/NET" and "PRINT" keys to increment/decrement the zero value. Inc/dec function will force a test mode zero output. |
| NOTE 3 | 1.8 SP.A | SPAN TRIM, Same as 1.7 except a span test mode output is provided. |

## SPECIFICATION:

4-20mA analog output, maximum impedance $\leq \mathbf{6 0 0}$

NOTE 1: Use standard setup for serial configuration under menu "11-15" (configuration switch S-2 closed) to establish communications before using the Option 1 menu.
The selected transmit Port from the indicator to the Analog module must be set
for be sure rate switches (1 the desired baud rate and be in continuous output mode. In the Option 1 menu to set the analog module for the selected communication Port and S1 baud $\& 2$ ) to match the indicator's.

NOTE 2 : The "GROSS/NET" key changes digit position and "PRINT" increments to the desired value.

NOTE 3 : During Trim adjustments, "GROSS/NET" will decrement the count and "PRINT" will increment the count.

## OPTION 2 <br> TAG/PRINTER OR COMPUTER SERIAL FORMAT

When the "tAg" mode is selected the two digit address (2.2. Addr) Is added to the standard serial format as follows:
-------- <AA><POL><DATA> -- etc.
Where: $\quad \mathrm{AA}=$ The two digit address.
POL $=$ Polarity sign.
DATA $=$ Weight numeric data field.

* In computer format "cptr" the demand serial output is in the "CONTINUOUS OUTPUT" format (See Section 6 pg. 6-5 for details).

OPTION 2 CONFIGURATION

| OPTION | PROMPT DISPLAY | INTERPRETATION |
| :---: | :---: | :---: |
| OP. 2 | $\begin{array}{ll} \mathrm{OP} .2 \\ \mathrm{OP} .2 & \mathrm{O} \\ \mathrm{n} \end{array}$ | TAG/PRINTER/COMPUTER FORMAT off <br> on Option enabled |
|  | $\begin{array}{ll} \text { 2.1. Std } \\ \text { tAg } & \\ & \text { Addr } \\ \hline \end{array}$ | Standard serial output format (see Config) Tags serial data with a unit address. RS485/422 format |
|  | 2.2. Addr | Selects a system address from (01-98) |
|  | 2.3. Std | Standard serial (demand) output format |



## PARALLEL BCD OPTION <br> (SERIALLY UPDATED)

* Converts serial data into full parallel BCD
* Tri-state buffer drivers (5 volt logic)
* Source or sink up to six (6) milliamps
* Direct mount on indicator or remote
* Self powered, 117/217 VAC

* Mild steel, painted enclosure 7.26 W x $2.06 \mathrm{H} \times 3.31 \mathrm{D}$, wt.2Lbs
* Automatic data checking/verification
* Serial data "pass-thru"
* Parallel data output compatible with UMC2000 format



## APPLICATIONS:

$\qquad$


$$
7-13
$$

## REMOTE DISPLAY

## GENERAL INTRODUCTION:

As a remote display serial communication device this unit is designed to receive, on Port 1, either RS232 or 20 ma loop continuous serial output data from a WEIGHT INDICATOR (UMC600, IQ700, UMC555/444 or UMC2000) and update the remote display with the display data from the WEIGHT INDICATOR (sending unit). In addition, the UMC555/444 REMOTE DISPLAY offers a pass-thru RS232 or 20mal serial simplex output on PORT 2 which is configurable for baud rate, demand, continuous or no output (OFF), a delay on demand print, and a selection for Printer or Computer output format. If the serial communicationis disrupted to the REMOTE DISPLAY, after 5 seconds it will blink all dashes across the display until communication is reestablished.

When remote function key operations (ZERO, GROSS/NET, TARE \& PRINT) are required, these functions can be serially downloaded from the REMOTE DISPLAY front panel keys to the WEIGHT INDICATOR if Port 1 is wired and configured for "fullduplex" serial communicationwith the WEIGHT INDICATOR (UMC600, UMC555/444, or UMC2000).

WEIGHT INDICATOR


## REQUIREMENTS: EPROM - KBL1921-5

The standard UMC444 or UMC555 is easily converted to a REMOTE DISPLAY by installing the

## KBL1921-5 EPROM.

CONFIGURATION: (Configuration Table provided on following page)
A. Close S1-2 (CONF). This places the instrument in the configuration mode.
B. PARAMETERS are selected by pushing the "ZERO" key. PARAMETER DATA SELECTION is selected using the "GROSS/TARE" key. (See Configuration Table)
C. Parameter 1 selects the baud rate at which the REMOTE DISPLAY will receive continuous serial output data from the sending unit.

## Baud rate must be set to the same baud rate as the weight indicator (sending unit) !!

D. Parameter 2 selects the baud rate for PORT 2 Pass-Thru simplex RS232 or 20mal serial output.
E. Parameter 3 configures PORT 2 for print on demand, continuous serial output, or disables PORT 2 output (oFF). In demand mode the "PRINT" key on the REMOTE DISPLAY is active.

When PORT 2 is selected for demand print the serial output from the REMOTE DISPLAY is inhibited if the weight data is "negative gross data" or in "motion".
F. Parameter 4 selects PORT 2 demand print for "printer" (Pr) or "computer" (CP) serial output format.
G. Parameter 5 enables a (3) second delay between demand prints on PORT 2.
H. Open S1-2 (CONF). The REMOTE DISPLAY is returned to the normal operating mode.

## CONFIGURATION TABLE

| PARAMETER <br> SELECT | PARAMETER DATA SELECTION | FUNCTION |
| :---: | :---: | :---: |
| 1 |  | PORT 1 BAUD RATE |
| See Note below | $\begin{aligned} & \text { P1. } 12 \\ & \text { P1. } 24 \\ & \text { P1. } 48 \\ & \text { P1. } 96 \end{aligned}$ | $\begin{array}{lllll} 1 & 2 & 0 & 0 & \text { Baud rate for } \\ 2 & 4 & 0 & 0 & \text { receiving wt. } \\ 4 & 8 & 0 & 0 & \text { data } \\ 9 & 6 & 0 & 0 & \end{array}$ |
| 2 |  | PORT 2 BAUD RATE |
|  | $\begin{aligned} & \mathrm{P} 1.12 \\ & \mathrm{P} 1.24 \\ & \mathrm{P} 1.48 \\ & \mathrm{P} 1.96 \end{aligned}$ | $\begin{array}{lllll} 1 & 2 & 0 & 0 & \text { Transmit baud } \\ 2 & 4 & 0 & 0 & \text { rate selection } \\ 4 & 8 & 0 & 0 & \\ 9 & 6 & 0 & 0 \end{array}$ |
| 3 |  | PORT 2 CONFIGURATION |
|  | $\begin{array}{r} \mathrm{oFF} \\ \mathrm{dE} \\ \mathrm{Co} \end{array}$ | Port 2 disabled <br> Demand print <br> Continuous output |
| 4 |  | PORT 2 SERIAL OUTPUT FORMAT |
|  | $\begin{aligned} & \mathrm{Pr} \\ & \mathrm{CP} \end{aligned}$ | printer format output computer format output |
| 5 |  | PORT 2 TIME DELAY (DEMAND PRINT) |
|  | $\begin{array}{r} \text { oFF } \\ \text { dely } \end{array}$ | time delay disabled time delay enabled |

Note - Parameter 1 selection must be configured to agree with the selected output from the WEIGHT INDICATOR.

## INSTALLATION:

Per application requirements (RS232 or 20 mal ) connect the transmit port of the WEIGHT INDICATOR to the appropriate receiver on Port 1 of the REMOTE DISPLAY.

If front panel function keys from the REMOTE DISPLAY are to be active the system must be wired for "Full Duplex" communication.

## SERIAL PORT 1

(RS232C simplex)

TO CONFIGURE PORT \#1 FOR RS232C: JUMPER S3-1 to S3-2


## REMOTE DISPLAY WEIGHT INDICATOR

(RS232C duplex)


REMOTE DISPLAY WEIGHT INDICATOR
(20mA I LOOP simplex)
Remote Display configured as a passive receiver


REMOTE DISPLAY WEIGHT INDICATOR

## (20mA I LOOP duplex)

Remote Display configured as a passive receiver and active transmitter.


## REMOTE DISPLAY WEIGHT INDICATOR

## SERIAL PORT 2 (Simplex Only)

The UMC444/555 REMOTE DISPLAY is also equipped with a second simplex output on Serial Port 2 for Pass-Thru serial I/O. Pass-Thru serial output data is the serial data received on Port 1 of the REMOTE DISPLAY from the WEIGHT INDICATOR and then sent back out on Port 2 of the REMOTE DISPLAY. Two (2) additional remote devices may be wired to Port 2; one on the RS232C output and another on the Active 20mA I Loop. Diagrambelow shows wiring configuration for both RS232 and 20mA current


KGY8924-5]

WIRING TABLE

| UMC555/444 REMOTE DISPLAY |  | UMC555/444/600/2000 |
| :--- | :--- | :--- |
| PORT 1 RS232 |  |  |
| TB2 - 5 | TX1 | RX (RS232) |
| TB2 - 3 | RX1 | TX (RS232) |
| TB3 - 1 | sig. common | sig. common |
| PORT 1 20MAL |  |  |
| TB2 - 1 | TX+ (active) | RX+ (passive) |
| TB2 - 2 | TX- (active) | RX- (passive) |
| TB2 - 3 | RX+ (passive) | TX+ (active) |
| TB2 - 4 | RX- (passive) | TX- (active) |

(T) Highlighted signals show wiring requirements for simplex communication between the REMOTE DISPLAY and the WEIGHT INDICATOR, in either RS232 or 20mal configuration.

Important ! 1.) Serial output data from the WEIGHT INDICATOR to the REMOTE DISPLAY must be configured for continuous output.
2.) Port 1 baud rate of the REMOTE DISPLAY must be compatible with the continuous output from the WEIGHT INDICATOR. Baud rate selection is in
Parameter 1.

Note - When 20 ma loop "Full Duplex" communication is required the UMC444/555 REMOTE DISPLAY is typically wired in its active loop configuration since passive transmission requires the additional installation of the U16 (HCPL 4100) IC option. In this configuration the WEIGHT INDICATOR must therefore receive in 20 mal passive mode.
Refer to the UMC444/555 Operational Manual for further instructions regarding 20mal passive transmission.

# SECTION 8 <br> RECOMMENDED SPARE PARTS 

## PART NUMBER

KGY8924-1
KGY8924-2

KFL8924-1

KHA8924-1

KHY7237

KHY7237G

KDK7238

KBF8918C

KBT7116-4

KBT7116-5

## DESCRIPTION

STD.CPU/Analog to Digital Assembly STD.CPU with RFI shielded A/D Assembly

LED Display Assembly

Power Supply

TD. Front Panel Overlay

UMC444 Front Panel Overlay

UMC444 Capacity Label Plate

Microprocessor (80C31)

6 - Pin Standard Load Cell Connector

Panel - Mount Kit

