SCT-1SX-AN

Firmware version 01.21.01

Modbus Protocol

© Rice Lake Weighing Systems. All rights reserved.

Rice Lake Weighing Systems® is a registered trademark of Rice Lake Weighing Systems.

All other brand or product names within this publication are trademarks or registered trademarks of their respective companies.

All information contained within this publication is, to the best of our knowledge, complete and accurate at the time of publication. Rice Lake Weighing Systems reserves the right to make changes to the technology, features, specifications and design of the equipment without notice.

The most current version of this publication, software, firmware and all other product updates can be found on our website:

www.ricelake.com

Table of contents

Introduction	5
Modbus Protocol	6
Modbus Functions	6
Functions 01, 03, 04 - Coil / Register Reading	6
Functions 05, 06 - Single Coil / Single Register Writing	6
Functions 15, 16 - Several Coils / Registers Writing	6
Error Control	7
Communication Speed	7
Examples	8
Connection	9
Selection of Modbus Protocol	10
Data Reading (Input Area)	11
Table 1 - Input Status Register	12
Table 2 - Output Status Register	12
Table 3 - Command Status Register	13
Table 4 - Alibi Status Register	13
Table 5 - Output Functions	14
Table 6 - Indicator Status	14
Coil Data Area	15
Reading and Writing Data (Holding Data Area)	15
Analog Output Configuration (V values)	25
Analog Output Calibration (V)	25
Analog Output Configuration (mA values)	26
Analog Output Calibration (mA)	26
Commands	27

Calibration Procedure by Modbus	28
Theoretical Calibration	29
Zeroing the Scale	30
Quick Zero Calibration - Mechanical Tare Zeroing	30
Filter Setting	31
Backup and Restoring the Setup	32
Examples	32
Saving or Reading a weighing operation in the Alibi memory	32
MODBUS Calibration	33
Output Setting	34
Input Setting	34
Analog Output Setting	35

Introduction

Thank you for purchasing this product.

This manual contains modbus information for the following SCT-1SX digital weight transmitters:

SCT-1SX-AN

It is recommended that you carefully follow the instructions for programming the weight transmitter; performing actions not indicated in this manual could compromise the functionality of the scale.

Manuals are available from Rice Lake Weighing Systems at www.ricelake.com/manuals Warranty information is available at www.ricelake.com/warranties

Any problem with the product must be reported to the manufacturer or to the retailer where it was purchased. Always TURN OFF THE POWER SUPPLY prior to installation or repair action.

Modbus Functions

Function	Description
01 (0×01)	Coil reading
03 (0×03)	Holding data Area registers reading
04 (0×04)	Input Area registers reading
05 (0×05)	Single coil writing
06 (0×06)	Single register writing
15 (0x0F)	Several coils writing
16 (0×10)	Several registers writing

Functions 01, 03, 04 - Coil / Register Reading

Query:	Add	01/03/04	00	00	00	02	CRC / LRC						
	Modbus	Function	Starting address		Starting address		Starting address		Starting address		ting address Number of		Error control
	address		00 = 30001 (input)		to read		(2 bytes)						
			40001 (holding)										
			1	(coil)									

Response:	Add	01 / 03 / 04	04	xx xx xx xx		XX	CRC / LRC
	Modbus	Function	No. of		Data	Error control	
	address		Bytes				(2 bytes)

Functions 05, 06 - Single Coil / Single Register Writing

Query:	Add	05 / 06	00	00	XX	XX	CRC / LRC
	Modbus address	Function	Register 00 = 40001 1		Value t	o write	Error control (2 bytes)

Response:	Add	05 / 06	04	00	xx	xx	CRC / LRC
	Modbus address	Function	Register	address	Writter	n value	Error control (2 bytes)

Functions 15, 16 - Several Coils / Registers Writing

Query:	Add	0F / 10	00	00	00	02	04	xx	XX	xx	XX	CRC / LRC
	Modbus	Function	Starting address		Number of reg-		No. of	Value to write		Value to write		Error control
	address		00 = 30001 (input)		isters /	ers / coils to bytes to		in the first		in the s	second	(2 bytes)
			40001 (holding)		wr	ite	write	regi	ster	regi	ster	
			1 (coil)									

Response:	Add	0F / 10	00	00	00	02	CRC / LRC
	Modbus address	Function	Starting	address	register	oer of rs / coils lified	Error control (2 bytes)

Error Control

CYCLICAL REDUNDANCY CHECK (CRC)

In RTU transmission mode the messages include an error control field based on a CRC method, calculated as follows:

- 1. Load the value 0xFFFF into a 16bit register (called CRC).
- 2. Perform the exclusive OR operation between the first byte of the message and the least significant byte of the CRC register.
- 3. Shift the CRC register one position to the right, a 0 is entered in place of the MSB. The LSB is extracted and examined.
- 4. If LSB = 0 → repeat point 3.
 If LSB = 1 → Perform the exclusive OR operation between the CRC register and the value 0xA001.
- 5. Repeat steps 3 and 4 until 8 shifts have been performed.
- 6. Repeat steps 2 to 5 for the next byte of the message.
- The least significant byte must be transmitted first, followed by the most significant byte.

LONGITUDINAL REDUNDANCY CHECK (LRC)

In ASCII transmission mode the messages include an error control field based on a LRC method, calculated as follows:

- 1. Add together all the bytes of the message, excluding the first character (: or ;) and the final CRLF, within an 8-bit field. In this way the carryovers are discarded.
- 2. Subtract the value obtained from 0xFF, thus obtaining the complement to 1.
- 3. Add 1 to obtain the complement to 2.
- 4. The most significant byte must be transmitted first, followed by the least significant byte.

Communication Speed

The reading frequency depends on the number and which registers are being interrogated. The standard frequency is 25-30 Hz. A read frequency of **110 Hz** can be achieved by reading only these registers in a single frame:

30001	Cuana wainht			
30002	Gross weight			
30003	Naturalaht			
30004	Net weight			
30005	Input status register			

or

40001	Cross weight				
40002	Gross weight				
40003	Naturalisht				
40004	Net weight				
40005	Input status register				

Examples

READING OF REGISTER 30005 (INPUT STATUS REGISTER)

Query:	А	04	00	04	00	01	CRC	/ LRC
	Modbus address	Function	Starting address (30005)		Number of registers to read			control ytes)
Response:	01	04	02	xx	xx		/ LRC	
	Modbus address	Function	No. of Bytes	Data value			control ytes)	

READING OF REGISTERS 30001, 30002 (GROSS WEIGHT)

Query:	А	04	00	00	00	02	CRC / LRC
	Modbus address	Function	J	Starting address (30001)		f registers ead	Error control (2 bytes)

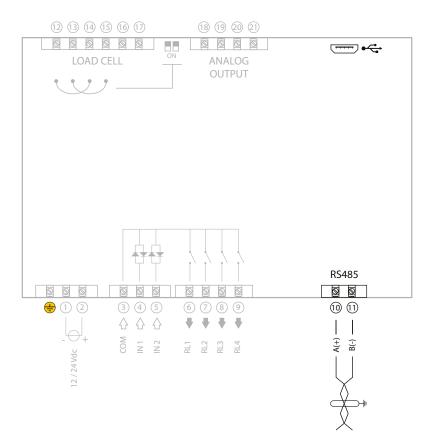
Response:	01	04	04	XX	XX	XX	XX	CRC / LRC
	Modbus address	Function	No. of Bytes	Data value				Error control (2 bytes)

WRITING OF REGISTERS 40001, 40002, 40003 (SEND MANUAL TARE COMMAND WITH VALUE 1000 kg)

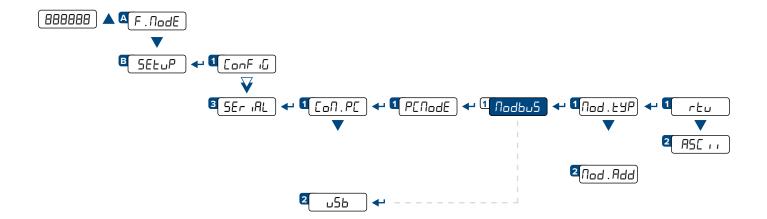
Query:	Α	10	00	00	00	03	06	00	03	00	00	03	E8	CRC / LRC
	Modbus	Function	Star	ting	Numl	oer of	No. of	Manu	al tare		Param	neter 1		Error control
	address		add	ress	regi	sters	bytes to	comr	mand		0x03E8	3 = 1000)	(2 bytes)
			(40	001)	/ coi	ls to	write							
					wr	ite								

Response:	01	10	00	00	00	03	CRC / LRC
	Modbus address	Function	Star add	9	Numb regis mod	sters	Error control (2 bytes)

WRITING OF REGISTER 40001 (SEND ZERO COMMAND)


Query:	Add	06	00	00	00	01	CRC / LRC
	Modbus address	Function		address 001)		ommand 01)	Error control (2 bytes)

Response:	Add	06	00	00	00	01	CRC / LRC
	Modbus address	Function	Register	address	Value	written	Error control (2 bytes)


Connection

SCT-1SX-AN

The connection is made via the **RS485 or USB** port on the instrument.

Selection of Modbus Protocol

- **1.** Select the $\Pi \circ db \cup 5$ transmission mode in the parameter PE . $\Pi \circ dE / \cup 5b$.
- **2.** Select the type of transmission $A5E_{III}/rE_{II}$ in the parameter Nod . EYP.
- **3.** Set the modbus address (0 98) of the transmitter in the parameter $\Pi_{\text{DD}} d$. Add.

Data Reading (Input Area)

- The available data are divided into registers.
- Each register consists of 2 Bytes.

Register	Name						
30001	Crace weight						
30002	Gross weight.						
30003	ot weight						
30004	Net weight.						
30005	Input register (see Table 1 on page 12).						
30006	Command register (see Table 3 on page 13).						
30007	Output register (see Table 2 on page 12).						

•••	

•••							
30101	Firmware release.						
30102	Firmware release.						
30103	ADC mainta						
30104	ADC points.						
30111	μV.						
30115	Analog output current value (DAC).						
30116	Calibration (see page 28)						
30117	Analog output current value (V, 1 decimal).						
30118	Analog output current value (mA, 1 decimal).						
30120	Type approval status (0 = internal use / 1 = restricted).						
30122	Covied musely or						
30123	Serial number.						
30128	Pre-calibration status (0 = not pre-calibrated / 1 = pre-calibrated).						
30129	Setup size (in bytes)						
30132	Firmware name (characters 1,2).						
30133	Firmware name (characters 3,4).						
30134	Firmware name (characters 5,6).						
30135	Firmware name (characters 7,8).						
30136	Current zero value.						
30137	Current Zero value.						
30144	Indicator status (see Table 6 on page 14)						
30145	Theoretical ADC points per mV/V						
30146	Theoretical ADC points per IIIV/V						

Table 1 - **Input Register**

Bit	Description	Bit meaning			
		0	1		
15					
14	Not used.				
13					
12	Endian.	Big Endian	Little Endian		
11	Notuced				
10	Not used.				
9	Input 2.	Deactivated	Activated		
8	Input 1.	Deactivated	Activated		
7	Gross weight = 0.	No	Yes		
6	Manual Tare condition.	No	Yes		
5	Tare condition entered.	No	Yes		
4	Overload condition.	No	Yes		
3	Underload condition.	No	Yes		
2	Weight stability.	No	Yes		
1	Gross weight polarity.	+	-		
0	Net weight polarity.	+	-		

Table 2 - **Output Register**

Bit	Description	Bit meaning			
		0	1		
15	Not used.				
14	Decimals.	00 = 0	O1 = 1		
13	Decimals.	10 = 2	11 = 3		
12					
11	Not used.				
10	Not used.				
9					
8	Cell error.	No	Yes		
7	Unit of measure.	00 = g	01 = kg		
6	Offit of measure.	10 = t	11 = Ib		
5	Not used.				
4	Not used.				
3	Relay 4.	Not energized	Energized		
2	Relay 3.	Not energized	Energized		
1	Relay 2.	Not energized	Energized		
0	Relay 1.	Not energized	Energized		

Table 3 - Command Register

Bit	Description	Bit meaning
15		
14		
13		
12	Last command received.	
11	Last command received.	
10		
9		
8		
7		0 = Command correct and executed.
6	Result of last command received:	1 = Incorrect command.
5	Result of last command received:	2 = Incorrect command data. 3 = Command not allowed.
4		4 = Command non-existent.
3		
2	Draces and comment of count	Value in madula 10
1	Processed command count.	Value in module 16.
0		

Table 4 - **Alibi Register**

Bit	Description	Bit meaning	
		0	1
15			
14	Neturnal		
13	Not used.		
12			
11	Type of tare.	Semi-automatic	Manual
10			
9	Not used.		
8			
7			
6			
5	Number of rewrites.		
4		From 0 to 255 rewrites.	
3		rioni 0 to 255 rewrites.	
2			
1			
0			

Table 5 - Output Functions

0 = No function.		
1 = Setpoint on gross weight.		
2 = Setpoint on net weight.		
4 = Gross weight on zero.		
5 = Net weight on zero.		
6 = Weight in motion.		
23 = PRINT key pressed.		
25 = MODE key pressed.		
26 = Key C pressed.		
27 = ZERO key pressed.		
28 = TARE key pressed.		
29 = Error.		
30= Setpoint on net weight if a tare is set.		

Table 6 - Indicator Status

0 = Weighing	
1 = Numeric entering	
2 = Setup	
3 = Boot	
4 = TxRx Setup	
5 = Serial test	
6 = Print test	
7 = Firmware update	
8 = Stand-by	
9 = Auto-zero	
10 = Change channel	
11 = Digital input test	
12 = Exclude scheduler	
13 = Warm-up	

Values in grey rows can be ignored.

Coil Data Area

Read and write data area, consisting of 6 coils of 1 bit each.

Register	Name	Bit meaning	
		0	1
1	Digital output 1.	Output not active.	Output active.
2	Digital output 2.	Output not active.	Output active.
3	Digital output 3.	Output not active.	Output active.
4	Digital output 4.	Output not active.	Output active.

Reading and Writing Data (Holding Data Area)

Register	Name	
40001	Gross weight.	
40002		
40003	Mot weight	
40004	Net weight.	
40005	Input Register (see Table 1 on page 12).	
40006	Command Register (see Table 3 on page 13).	
40007	Output Register (see Table 2 on page 12).	

Weights and Setpoints

Register	Name	
40101	Gross weight.	
40102		
40103	Maa india	
40104	Net weight.	
40105	Town	
40106	Tare.	
40107	Input Register (see Table 1 on page 12).	
40108	Output Register (see Table 2 on page 12).	
40109	S + 1 + 4 ON 1	
40110	Setpoint 1 ON temporary.	
40111	Setpoint 2 ON temporary.	
40112		
40113	Satasint 2 ON tamperany	
40114	Setpoint 3 ON temporary.	
40115	Setpoint 4 ON temporary.	
40116	Setpoint 4 ON temporary.	
40121	Satpoint 1 OEE temporary	
40122	Setpoint 1 OFF temporary.	
40123	Setpoint 2 OFF temporary.	
40124		

Register	Name		
40133	Setpoint 1 ON permanent		
40134	Setpoint 1 ON permanent.		
40135	Satraint 2 ON parmanent		
40136	Setpoint 2 ON permanent.		
40137	Catacint 2 ON a surround		
40138	Setpoint 3 ON permanent.		
40139	Catacint 4 ON a surround		
40140	Setpoint 4 ON permanent.		
40145	Code sind 4 OFF		
40146	Setpoint 1 OFF permanent.		
40147			
40148	Setpoint 2 OFF permanent.		
40149	Catacint 2 OFF accurate		
40150	Setpoint 3 OFF permanent.		
40151	Catacint 4 OFF assument		
40152	Setpoint 4 OFF permanent.		

Commands

Register	Name
40231	Command Register (see Table 3 on page 13).
40232	Command (see list of commands on page 27).
40233	Parameter 1.
40234	Parameter i.
40235	Parameter 2.
40236	Parameter 2.
40237	Parameter 3.
40238	raidilletei 5.

Alibi

Register	N _i	ame	
40251			
40252	Alibi Gross weight.		
40253	Alihi tara wajaht		
40254	Alibi tare weight.		
40255	ID.		
40256	ID.		
40257	Alibi Register (see Table 4 on page 13).		
		0 = Ok.	
		1 = Alibi mode not selected.	
40258	Alibi memory availability. 2 = Alibi memory not present. 3 = Alibi memory not initialized. 4 = Alibi memory empty.	2 = Alibi memory not present.	
		3 = Alibi memory not initialized.	
		4 = Alibi memory empty.	

Setup

Register	Name
43001	Word 1.
45048	Word 2048.

Calibration

Register	Name	
40901	Number of calibration points.	
40902		
40903	Calibration weight 1.	
40904	Calibration continues	
40905	Calibration weight 2.	
40906	Calibration continues	
40907	Calibration weight 3.	
40908	ADC value at zero.	
40909	ADC value at zero.	
40910	ADC value of callbration maint 1	
40911	ADC value of calibration point 1.	
40912	ADC value of calibration maint 2	
40913	ADC value of calibration point 2.	
40914	ADC value of calibration maint 2	
40915	ADC value of calibration point 3.	

Metrological Data

Register	Name		
40951		0 = g 1 = kg	
	Unit of measure.	2 = t 3 = lb	
40952	Division 1.		
40953	Division 2.		
40954	Decimals.		
40955	Range 1.		
40956			
40957	Range 2.		
40958			

Filter

Register	Name	
40959	Filter Index (see example on page 31).	
40960	Custom filter rate.	
40961	Win custom filter.	A stitute and the Contract filters in a stand
40962	Avg custom filter.	Active only if Custom filter is selected.
40963	Pit custom filter.	

Metric Parameters

Register	Name	
40964	Auto zero.	0 = Disabled.
40304	Add 2010.	1 = Enabled.
40965	Auto zero percentage.	
40966	Zero key percentage.	
40967	Zero tracking divisions.	
40968	Stability divisions.	
40969	Calibration zone G.	
40970	Zone of use G.	
40974	Zero tracking time.	(100-5000ms)
40975	Stability detection time.	(10-10000ms)
40976	Additional filter for stability detection.	(0-2000ms, 0 disabled)
40977	Stability filter divisions	(1 to 100 divisions)

Anti-Peak Filter

Register	Name
41021	Lock divisions (PF. LF. du).
41022	Unlocked to locked switch time (PF. LF. LN, 0,01 s).
41023	Unlock divisions (Ph . d เป).
41024	Locked band divisions (Ph. bn. dll).
41025	Locked peak time (PF. L INE, 0,01 s).

To save these settings send command 28 (0x1C) "SAVE SETUP".

Metric Parameters

Register	Name
41001	Filter 1 ID.
41002	Filter 1 value.
41003	Filter 2 ID.
41004	Filter 2 value.
41005	Filter 3 ID.
41006	Filter 3 value.

ID	Filter	Value
1	Coarse	Frequency, 1 decimal (the value 30 stands for 3,0 Hz)
4	Selective	Frequency, 1 decimal (the value 500 stands for 50,0 Hz)
5	Fine	Percentage, 2 decimals (the value 100 stands for 10%)

To save these settings send command 36 (0x24) "WRITE AND SAVE DATA" with parameter 1 equal to 0.

Tare and Modbus ID Configuration

Register	Name	
40981		0 = Disabled.
	Tare configuration.	1 = Locked.
		2 = Unlocked.
40982	Modbus ID.	0 to 98.
40983	Channel excluded to dependent channels. Not approved	
40984	Function of use.	
40985	Restore zero.	0 = Disabled.
40985		1 = Enabled.
40986	Restore tare.	0 = Disabled.
40980		1 = Enabled.
40987	Unit of measure 2 decimals (0 to 4).	
40988	Unit of measure 2.	0 = Default.
40988	Offic of friedsure 2.	1 = Custom.
40989	Division of the unit of measure 2 (1, 2, 5, 10, 20, 50).	
40990		
40991	Unit of measure 2 conversion factor (fixed-point integer, 5 decimal places).	j.

To save these settings send command 28 (0x1C) "SAVE SETUP".

Weights and Setpoints on 1 Word

Register	Name
41101	Gross weight.
41102	Net weight.
41103	Tare.
41104	Input Register (see Table 1 on page 12).
41105	Output Register (see Table 2 on page 12).
41106	Setpoint 1 ON temporary.
41107	Setpoint 2 ON temporary.
41108	Setpoint 3 ON temporary.
41109	Setpoint 4 ON temporary.
41112	Setpoint 1 OFF temporary.
41113	Setpoint 2 OFF temporary.
41114	Setpoint 3 OFF temporary.
41115	Setpoint 4 OFF temporary.
41118	Setpoint 1 ON permanent.
41119	Setpoint 2 ON permanent.
41120	Setpoint 3 ON permanent.
41121	Setpoint 4 ON permanent.
41124	Setpoint 1 OFF permanent.
41125	Setpoint 2 OFF permanent.
41126	Setpoint 3 OFF permanent.
41127	Setpoint 4 OFF permanent.

Configuration of Inputs, Outputs

Register	N	ame
41601	Input 1 function.	0 = No function.
		1 = ZERO key pressed.
41602	Input 2 function.	2 = TARE key pressed. 3 = MODE key pressed.
41603		4 = PRINT key pressed.
41003	Not used.	5 = C key pressed.
41604		6 = Off. 7 = Disabling keypad.
41605	Output 1: Function.	See Table 5 on page 14.
41606	Output 1: Type of contact (NO/NC).	
41607	Output 1: Switching condition (direct / stability).	
41608	Output 1: Hysteresis (disabled / enabled).	
41609	Output 1: Sign (positive / negative).	
41610	Output 1: Switching delay.	
41611	Output 1: Activation time.	
41612	Output 2: Function.	See Table 5 on page 14.
41613	Output 2: Type of contact (NO/NC).	
41614	Output 2: Switching condition (direct / stability).	
41615	Output 2: Hysteresis (disabled / enabled).	
41616	Output 2: Sign (positive / negative).	
41617	Output 2: Switching delay.	
41618	Output 2: Activation time.	
41619	Output 3: Function. See Table 5 on page 14.	
41620	Output 3: Type of contact (NO/NC).	
41621	Output 3: Switching condition (direct / stability).	
41622	Output 3: Hysteresis (disabled / enabled).	
41623	Output 3: Sign (positive / negative).	
41624	Output 3: Switching delay.	
41625	Output 3: Activation time.	
41626	Output 4: Function.	See Table 5 on page 14.
41627	Output 4: Type of contact (NO/NC).	
41628	Output 4: Switching condition (direct / stability).	
41629	Output 4: Hysteresis (disabled / enabled).	
41630	Output 4: Sign (positive / negative).	
41631	Output 4: Switching delay.	
41632	Output 4: Activation time.	

Analog Output Configuration (DAC Values)

Register	Name
41647	Analog output function.
41648	
41649	Not used.
41650	
41651	Value weight 1.
41652	Value weight 1.
41653	Value weight 2
41654	Value weight 2.
41655	DAC value weight 2.
41656	Value weight 2
41657	Value weight 3.
41658	DAC value weight 3.

Analog Output Configuration (V values)

Register	Name
41693	V value Underload.
41694	Volume constraint d
41695	Value weight 1.
41696	V value weight 1.
41697	Value weight 2.
41698	value weight 2.
41699	V value weight 2.
41700	Value weight 3.
41701	value weight 5.
41702	V value weight 3.
41703	V value Overload.

Analog Output Calibration (V)

Register	Name
41801	DAC value at 0 V.
41802	DAC value at 10 V.

Analog Output Configuration (mA values)

Register	Name
41737	mA value Underload.
41738	Volume constituted
41739	Value weight 1.
41740	mA value weight 1.
41741	Value weight 2
41742	Value weight 2.
41743	mA value weight 2.
41744	Value weight 2
41745	Value weight 3.
41746	mA value weight 3.
41747	mA value Overload.

Analog Output Calibration (mA)

Register	Name
41803	DAC value at 0 mA.
41804	DAC value at 20 mA.

Commands

COMMAND	DESCRIPTION	PARAMETER 1	PARAMETER 2
0 (0x00)	No command.	Use this command before rep	eating the same command twice.
1 (0×01)	Zero.	-	0 (0x00) = check stability. 1 (0x01) = immediate zero.
2 (0x02)	Tare.	-	0 (0x00) = check stability. 1 (0x01) = immediate tare.
3 (0×03)	Manual tare.	Tare value.	-
10 (O×OA)	Writing setpoint 1.	Output activation "threshold" weight.	Output deactivation "threshold" weight.
11 (0×0B)	Writing setpoint 2.	Output activation "threshold" weight.	Output deactivation "threshold" weight.
12 (0x0C)	Writing setpoint 3.	Output activation "threshold" weight.	Output deactivation "threshold" weight.
13 (0×0D)	Writing setpoint 4.	Output activation "threshold" weight.	Output deactivation "threshold" weight.
25 (0×19)	Set relay status. (Relays must have function: 0 "no function").	 Status bitmask of the relays to be enabled (bit 0 = relay 1, bit 1 = relay 2 bit 2 = relay 3, bit 3 = relay 4). Analog output DAC. 	If = 0: Parameter 1 refers to the relays. If = 1: Parameter 1 refers to the analogue output.
28 (0x1C)	Save setup.	-	-
30 (0×1E)	Read Alibi memory.	Rewrite number.	Weighing operation alibi ID.
31 (Ox1F)	Saving a weighing operation in the Alibi memory.	-	-
34 (0×22)	Restart instrument.	-	-
35 (0x23)	Data reading.	-	-
36 (0×24)	Write and save data.	Parameter 1 = 0 (0x00) for saving data.	-
37 (0x25)	Calibration point acquisition.	O (0×00) = Zero point 1 (0×01) = First point 2 (0×02) = Second point 3 (0×03) = Third point.	-
38 (0x26)	Cancel current calibration.	-	-
39 (0x27)	Zero calibration.	-	-
40 (0×28)	Enabling / Disabling keypad.	0 (0x00) = disabled. 1 (0x01) = enabled.	-
55 (0x37)	Disable a peripheral device.	0 (0x00) = disables digital outputs (parameter 2). 1 (0x01) = disables analog output (parameter 2).	Bit 0 = 1 disables relays 1/ analog output. Bit 1 = 1 disables relays 2.
60 (0x3C)	ID Modbus setting.	SN of the instrument.	Bit 0 to 3 = ID. Bit 4 to 7 = 1 to save data.
65 (O×41)	Serial baud rate setting.	Baud rate index: 0 = 1200	
66 (0x42)	Theoretical calibration.	See Theoretical calibration on	page 29

Calibration Procedure by Modbus

- 1. Give the command 35 (0x23) "DATA READING".
- 2. If necessary, modify the metrological data registers (40951 40970).
- 3. Set the number of calibration points and the weight value of the calibration points in registers 40901 40907.
- **4.** Check the correct progress of calibration in register 30116.

0	CALIBRATION NOT STARTED
1	ACQUISITION IN PROGRESS
2	ACQUISITION OK
3	ACQUISITION ERROR
4	CALIBRATION OK
5	CALIBRATION ERROR
6	ZERO CALIBRATION IN PROGRESS
8	THEORETICAL CALIBRATION

- **5.** Unload the scale and send command **37** (0x25) **"CALIBRATION POINT ACQUISITION"** with parameter 1 equal to 0 to acquire the calibration zero point. In register 30116, the calibration status changes to **ACQUISITION IN PROGRESS** and, if it then changes to **ACQUISITION OK**, it is possible to proceed (if instead it changes to **ACQUISITION ERROR** the point has not been acquired, send command **38** (0x26) **"CANCEL CALIBRATION"** and try to acquire the point again. Check that the weight is stable).
- **6.** Load the scale with the first sample weight and send command **37** (0x25) "CALIBRATION POINT ACQUISITION" with parameter 1 equal to 1 to acquire the first calibration point. In register 30116, the calibration status changes to ACQUISITION IN PROGRESS and, if it then changes to ACQUISITION OK, it is possible to proceed (if instead it changes to ACQUISITION ERROR the point has not been acquired, send command **38** (0x26) "CANCEL CALIBRATION" and start again from step 5. Check if the weight is stable, and check that the μ V are greater than the zero point).

Repeat step 6 for each calibration point (the number of calibration points has been set in register 40901).

7. Send command **36** (0x24) "WRITE AND SAVE DATA" with parameter 1 equal to 0 to save the calibration. The calibration status changes to CALIBRATION OK (if it changes to CALIBRATION ERROR, send command **38** (0x26) "CANCEL CALIBRATION" and repeat the procedure from step 5).

Theoretical Calibration

1. Write parameters registers:

Registers 40233-40234 (PARAMETER 1): total load cells capacity. Scale decimals.

Registers 40235-40236 (PARAMETER 2): load cells sensitivity (*). 5 decimals.

Registers 40237-40238 (PARAMETER 3): mechanical tare value (if not known, insert the value 0). Scale decimals + 1.

- 2. Send the command 66 (0x42) "THEORETICAL CALIBRATION".
- 3. Save the parameters by sending the command 28 (0x1C) "SAVE SETUP".

If there are several load cells connected via a junction/equalisation box, enter the average value:

n

Example:

Theoretical calibration of a platform with 4 load cells.

Total capacity = 2000kg Mechanical tare = 55 kg

Load cells sensitivity: cell 1 = 2,01032 cell 2 = 1,99420 cell 3 = 1,98846 cell 4 = 2,00375

Register	Va	lue
40232	66 (0x42)	
40233	2000 (0,,07D0)	
40234	2000 (0x07D0)	
40235	400040 (0.00000055)	4 00040)
40236	199918 (0x00030CEE)	(1,99918)
40237	550 (0.0000)	(55.0)
40238	550 (0x0226)	(55,0)

Zeroing the Scale

Send the command 1 (0x01) "ZERO".

Note: This command does not affect calibration. When the instrument is switched off the zeroing is lost.

Quick Zero Calibration - Mechanical Tare Zeroing

- Send the command 35 (0x23) "DATA READING".
- Send the command **39** (0x27) "**ZERO CALIBRATION**".
- Check that the value in register 30116 changes from 6 (0x06) "Zero calibration in progress" to 2 (0x02) "Acquisition ok".
- Give the command **36** (0x24) "WRITE AND SAVE DATA" entering the value 0 in PARAMETER 1 (0x00). Check that the value in register 30116 changes from 2 (0x02) "Acquisition ok" to 4 (0x04) "Calibration ok".

Note: Unlike the ZERO command, the ZERO CALIBRATION command acts on the calibration of the scale and makes the change of the zero point definitive.

Filter Setting

The filters available are the following and can be set by modifying the register 40959, entering the index of the filter to be set. Before reading the value in the register, give the command **35** (0x23) "**DATA READING**" (register 40001).

CONTENTS	FILTER	DESCRIPTION
0	F1	Filter at 5 Hz
1	F 2	Filter at 10 Hz
2	F3	Filter at 20 Hz
3	F 4	Filter at 40 Hz
4	F 5	Filter at 80 Hz
5	F 6	Filter at 160 Hz
6	F 7	Filter at 325 Hz

Then give the command **36** (0x24) "WRITE AND SAVE DATA" to save the change (register 40001).

Backup and Restoring the Setup

It is possible to make a complete backup of the system by copying the content of the registers 43001 to 45048.

To restore the setup:

Write the data previously copied in registers 43001 to 45048.

Then give the command 28 (0x1C) "SAVE SETUP" (register 40001)

Examples

Saving or Reading a weighing operation in the Alibi memory

To save a weighing operation in the Alibi memory give the command 31 (0x1F) "SAVE IN ALIBI MEMORY".

To read a weighing operation saved in the Alibi memory give the command, with parameter 1 equal to the rewrite number and parameter 2 equal to the ID number.

E.g. Reading of the weighing operation with ID = 131071 and rewrite number 00255.

Register	Value	Description
40001	31	Command READ ALIBI MEMORY.
40002	0	Day with a complete COFF
40003	255	Rewrite number = 255.
40004	1	ID
40005	65535	ID number = 131071 (0x1FFFF).

MODBUS Calibration

Calibration of a scale with 4 cells with a capacity of 50 kg, division 2 g (0.002 kg), only one calibration point (besides zero) with a weight of 20 kg.

1. Use command 35 (0x23) "DATA READING" with parameter 1 equal to 0 (dependent channels).

Register	Value	Description
40001	35	DATA READING command.
40002	00	Parameter 1 = 0 because the system has
40003	00	dependent channels.

2. Set the correct values in the registers for the metrological data.

Register	Value	Description
40901	1	Number of calibration points.
40902	0	Calibratian maint
40903	20000	Calibration weight
40951	1	Unit of measure (kg = 1).
40952	2	Division 1.
40953	0	Division 2.
40954	3	Decimals.
40955	0	Range 1 (value to be entered without
40956	50000	considering the decimal point).
40957	0	Range 2.
40958	0	Nange 2.

3. Unload the scale and use command **37** (0x25) "CALIBRATION POINT ACQUISITION" with parameter 1 equal to 0 to acquire calibration zero.

Register	Value	Description
40001	37	Command CALIBRATION POINT ACQUISITION.
40002	0	Development of the contribution of the contribution
40003	0	Parameter 1 = 0 to acquire the zero point.

30116	X	Check that the value is 2 before proceeding (see calibration procedure on page 28).
-------	---	---

4. Load the scale with the sample weight and give command **37** (0x25) "CALIBRATION POINT ACQUISITION" with parameter 1 equal to 1 to acquire the first calibration point.

Register	Value	Description
40001	37	Command CALIBRATION POINT ACQUISITION.
40002	0	Parameter 1 = 1 to acquire the first
40003	1	calibration point.

30116

5. Use command **36** (0x24) "WRITE AND SAVE DATA" with parameter 1 equal to 0 to save the changed parameters and the calibration. Check that the value in register 30116 changes from 2 (0x02) "Acquisition ok" to 4 (0x04) "Calibration ok".

Output Setting

Example of setting output 1 with setpoint on gross weight, contact normally open, direct switching condition, no hysteresis, positive sign, no switching delay and enabled for 10 s.

Register	Value Description		
41605	1	1 = Setpoint on gross.	
41606	0	NO.	
41607	0	Direct switching condition.	
41608	0	Hysteresis disabled.	
41609	0	Positive sign.	
41610	0	No communication delay.	
41611	100	Activation time in tenths of a second.	

Input Setting

Example of setting input 1 to disable the keypad and input 2 to carry out tare.

Register	Value	Description	
41601	7	7 = Disabling keypad.	
41602	2	2 = Simulation of the tare key.	

Analog Output Setting

Example of analog output configuration for operation on gross weight at 4 - 20 mA. Using 3 calibration points at 0 kg, 50 kg, 100 kg. (the values used are indicative)

1. SELECTING THE OPERATING MODE:

Register	Register Value	
41647	1	O: analog output disabled. 1: analog output on gross weight. 2: analog output on net weight.

2. CALIBRATING THE ANALOG OUTPUT (V / mA)

Register	Value	Description	
41801	0	DAC value at 0 V.	
41802	63300 DAC value at 10 V.		

41803	0	DAC value at 0 mA.
41804	58200	DAC value at 20 mA.

3. ASSOCIATING AN OUTPUT VALUE (OR ADC POINTS) WITH THE WEIGHT:

	Value (mA)	Description	
41737	0	Output for underload (0 mA).	
41738			
41739	0	Weight 1 (0 kg).	
41740	40	Output for weight 1 (4.0 mA).	
41741		Weight 2 (50 kg).	
41742	50		
41743	120	Output for weight 2. (12.0 mA).	
41744	100	W : 112 #00 L)	
41745	100	Weight 3 (100 kg).	
41746	200	Output for weight 3. (20.0 mA)	
41747	200	Output for overload. (20.0 mA)	

Notes		
	 	

© Rice Lake Weighing Systems

Content subject to change without notice.

230 W. Coleman St. • Rice Lake, WI 54868 • USA

USA: 800-472-6703 • International: +1-715-234-9171