
iRite®

 Programming Language

Programmer Manual

PN 67888 Rev RJanuary 22, 2026

© Rice Lake Weighing Systems. All rights reserved.

Rice Lake Weighing Systems® is a registered trademark of
Rice Lake Weighing Systems.

All other brand or product names within this publication are trademarks or
registered trademarks of their respective companies.

All information contained within this publication is, to the best of our knowledge, complete and
accurate at the time of publication. Rice Lake Weighing Systems reserves the right to make

changes to the technology, features, specifications and design of the equipment without notice.

The most current version of this publication, software, firmware and all other product
updates can be found on our website:

www.ricelake.com

https://www.ricelake.com/
https://www.ricelake.com/en-us/

Revision History

© Rice Lake Weighing Systems ● All Rights Reserved 3

Technical training seminars are available through Rice Lake Weighing Systems.
Course descriptions and dates can be viewed at www.ricelake.com/training
or obtained by calling 715-234-9171 and asking for the training department.

Revision History
This section tracks and describes the current and previous manual revisions for awareness of major updates and when the
updates took place.

Revision Date Description
– April 03, 2012 Initial manual release with the launch of the product
M January 21, 2022 Revision history established after Rev M
N August 15, 2022 Added additional API parameters
O October 20, 2023 Clarified database operation descriptions
P September 10, 2024 Added SendChrArray parameter to Serial I/O API reference
Q September 19, 2025 Updated API references
R January 22, 2026 Added Alibi API parameters

Table i. Revision Letter History

iRite Programmer Manual

4 Visit our website www.RiceLake.com

Rice Lake continually offers web-based video training on a growing selection
of product-related topics at no cost. Visit www.ricelake.com/webinars

Contents
1.0 Introduction . 7

1.1 Overview . 7
1.2 iRite Programs . 7
1.3 Sound Programming Practices . 9

2.0 Tutorial . 10
2.1 Program Example with Constants and Variables . 11

3.0 Language Syntax . 15
3.1 Lexical Elements . 15

3.1.1 Identifiers . 15
3.1.2 Keywords . 15
3.1.3 Constants . 15
3.1.4 Delimiters . 16

3.2 Program Structure. 19
3.3 Declarations . 21

3.3.1 Type Declarations . 21
3.3.2 Variable Declarations . 24
3.3.3 Subprogram Declarations . 25

3.4 Statements . 27
3.4.1 Assignment Statement . 28
3.4.2 Call Statement . 28
3.4.3 If Statement . 30
3.4.4 Loop Statement . 32
3.4.5 Return Statement . 34
3.4.6 Exit Statement . 34

4.0 Built-in Types . 35
4.1 Using SysCode Data. 38

5.0 API Reference . 39
5.1 Scale Data Acquisition . 39

5.1.1 Weight Acquisition . 39
5.1.2 Weight Data Recording . 41
5.1.3 Tare Manipulation . 43
5.1.4 Rate of Change . 45
5.1.5 Accumulator Operations. 46
5.1.6 Scale Operation . 48
5.1.7 Calibration Data . 53

5.2 System Support. 54
5.3 Serial I/O . 61

5.3.1 880 Port Numbering . 65
5.4 Program Scale . 66
5.5 Setpoints and Batching . 66
5.6 Digital I/O Control . 76
5.7 Fieldbus Data . 78
5.8 Analog Output Operation . 79
5.9 Email . 80

https://www.ricelake.com

Contents

© Rice Lake Weighing Systems ● All Rights Reserved 5

Technical training seminars are available through Rice Lake Weighing Systems.
Course descriptions and dates can be viewed at www.ricelake.com/training
or obtained by calling 715-234-9171 and asking for the training department.

5.10 Pulse Input Operation . 80
5.11 Display Operation . 81
5.12 Display Programming . 82

5.12.1 Setting Widget Colors . 88
5.12.2 Image Widget Icons . 89
5.12.3 Display Charting. 90

5.13 Database Operation . 91
5.13.1 iRite SQL Feature . 94

5.14 Timer Control . 97
5.15 Mathematical Operations . 99
5.16 Bit-Wise Operation . 100
5.17 String Operations . 101
5.18 Data Conversion . 103
5.19 High Precision . 104
5.20 File I/O. 104
5.21 882D Belt Scale Data Acquisition . 109
5.22 Alibi Records . 112

6.0 Appendix . 113
6.1 Event Handlers . 113
6.2 Compiler Error Messages . 115
6.3 Database Operations . 116

6.3.1 Uploading . 116
6.3.2 Exporting . 116
6.3.3 Importing . 117
6.3.4 Clearing . 117
6.3.5 Downloading . 117

6.4 Fieldbus User Program Interface . 118
6.5 Program to Retrieve Hardware Configuration . 120
6.6 920i User Graphics . 121

iRite Programmer Manual

6 Visit our website www.RiceLake.com

Rice Lake continually offers web-based video training on a growing selection
of product-related topics at no cost. Visit www.ricelake.com/webinars

https://www.ricelake.com

Introduction

© Rice Lake Weighing Systems ● All Rights Reserved 7

1.0 Introduction
iRite is a programming language developed by Rice Lake Weighing Systems to be used with a programmable indicator.
Similar to other programming languages, iRite has a set of rules, called syntax, for composing instructions in a format that a
compiler can understand.
This manual is intended for use by programmers who write iRite applications for digital weight indicators.

WARNING: All programs should be thoroughly tested before implementation in a live system. To prevent personal injury
and equipment damage, software-based interrupts must always be supplemented by emergency stop switches and other
safety devices necessary for the application.

Manuals are available from Rice Lake Weighing Systems at www.ricelake.com/manuals
Warranty information is available at www.ricelake.com/warranties

1.1 Overview
An iRite program is a text file, which contains statements composed following the iRite language syntax. The text file created
using the iRite programming language must be compiled before use, this is done using a compiler program.
The compiler reads the text file and translates the program’s intent into commands that are understandable to the indicators
serial interface.
Other programming languages are often general and try to maximize flexibility in applications, therefore they have a lot of
overhead and functionality that the programmer does not need.
With a variety of experienced operators that will be doing most of the iRite programming, there was a need for a language that
was easy to learn and use for all programmers, but still familiar in syntax for the experienced programmer.
While creating the new language, the best features from other languages were used. The result is iRite: a compact language
(only six discrete statement types, three data types) with a general syntax similar to Pascal and Ada, the string manipulation of
Basic, and a rich set of function calls and built-in types specific to the weighing and batching industry.

1.2 iRite Programs
Each of the indicator tasks share processor time, but some tasks have higher priorities than others. If a low priority task is taking
more than its share of processor time, it will be suspended so a higher priority task is given processor time when it needs it.
When all the other higher priority tasks have completed, the low priority task will be resumed.
Gathering analog weight signals and converting it to weight data is the indicator’s highest priority. Running a user-defined
program has a very low priority. Streaming data out a serial port is the lowest priority task, because of its minimal computational
requirements. This means that if the iRite program hangs, the task of streaming out the serial ports will never get any CPU time
and streaming will never happen. An example of interrupting a task would be if a user program included an event handler for
SP1Trip (Setpoint 1 Trip Event) and this event fired.
The logic for the SP1Trip event is executing at a given moment in time. In this example, the programmer wanted to display the
message Setpoint 1 Tripped on the display. If the SP1Trip event logic does not complete by the time the indicator needs to
calculate a new weight, the SP1Trip handler will be interrupted immediately, a new weight will be calculated, and the SP1Trip
event will resume executing exactly where it was interrupted. In most circumstances, this happens so quickly the user will never
know that the SP1Trip handler was ever interrupted.

Write and Compile iRite Programs
Templates and sample programs are available from Rice Lake Weighing Systems to provide the skeleton of a working program.
With the iRite editor open, the program can be written. iRite source files are named with the .src extension.
In addition to writing .src files, a file with .iri extension can also be written. An .iri file is used to define frequently used, similar
subprograms that can then be included in the .src file with the #include API. Because iRite enforces declaration before use, the
#include statement must be placed before any of the subprograms that use components of the .iri file and after any variables,
constants and subprograms the .iri may need to use. For example, one could create a file called string.iri that contains user
created subprograms for string manipulation such as parsing, locating, trimming, etc that are not part of the current iRite API.
When compiled in the iRite editor, the complier takes the contents of the .iri file and places the entirety of it in the place of the
#include statement.

i

https://www.ricelake.com/manuals
http://www.ricelake.com/warranties

iRite Programmer Manual

8 Visit our website www.RiceLake.com

When ready to compile the program, use the Compile feature from the Tools menu in the Revolution editor. If the program
compiles without errors a new text file is created. This new text file has the same name but an extension of .cod. The new file
named your_program.cod is a text file containing commands that can be sent to the indicator via a serial communication
connection. Do not edit the .cod file.

iRite Editors
There are three iRite Editors that can be used:

• Revolution’s 88X and 1280 modules have built-in editors for the 88X and 1280 indicators
• iRev has a built-in editor for the 920i
• New in 2017 is VSCode iRite Extension; this has features for programmers like syntax highlighting, snippets and

pre-processing; to use VSCode, download the application from, http://code.visualstudio.com/download and within
VSCode, add the iRite extensions

Figure 1-1. iRite Extensions

Install the Program in the Indicator
The indicator must be in configuration mode before the .cod file can be sent. Use Revolution to send the .cod file to the
indicator.
The .cod file can be sent directly from Revolution by using the Download Configuration… selection on the Communications
menu and specifying to send the .cod file.
If the indicator is not in configuration mode, a pop-up message will appear in Revolution indicating it is not in configuration. It is
recommended that Revolution or the Revolution Editor is used to send the compiled program to the indicator. This method
implements error checking on each string sent to the indicator and helps protect from data transmission errors corrupting the
program.

Install and Set up VSCode iRite Editor
1. Install Revolution.
2. Download and Install VSCode from http://code.visualstudio.com/download.
3. Open VSCode.
4. Search extensions for Language iRite.
5. Install Language iRite.
6. Create new folder or open an existing one for your iRite project.
7. Create or open a .src file.
8. Click the iRite Build button to build.

An irite.settings.json file will be generated in this directory when the first build is created. Open this file to edit the desired
indicator information.

https://www.ricelake.com
https://code.visualstudio.com/download
https://code.visualstudio.com/download
http://code.visualstudio.com/download

Introduction

© Rice Lake Weighing Systems ● All Rights Reserved 9

Running the iRite Program
A program written for an indicator is simply a collection of one or more custom event handlers and their supporting
subprograms. A custom event handler is run whenever the associated event occurs. The ProgramStartup event is called
whenever the indicator is powered up, is taken out of configuration mode, or is sent the RS serial command. It should be
straightforward when the other event handlers are called.

Example: the DotKeyPressed event handler is called whenever “.” is pressed.
All events have built-in intrinsic functionality associated with them, although, the intrinsic functionality may be to do nothing. If a
custom event handler is written for an event, the custom event handler will be called instead of the intrinsic function, and the
default action will be suppressed.
For example, the built-in intrinsic function of the UNITS key is to switch between primary, secondary, and tertiary units. If the
handler UnitsKeyPressed was defined in a user program, then the UNITS key no longer switches between primary, secondary,
and tertiary units, but instead does whatever is written in the handler UnitsKeyPressed. The ability to turn off the custom event
handler and return to the intrinsic functionality is provided by the DisableHandler function.
It is important to note that only one event handler can be running at a time. This means that if an event occurs while another
event handler is running, the new event will not be serviced immediately but instead will be placed in a queue and serviced after
the current event is done executing.
This means that if executing within an infinite loop in an event handler, then no other event handlers will ever get serviced.
This doesn’t mean that the indicator will be totally locked-up: The indicator will still be executing its other tasks, like calculating
current weights, and running the setpoint engine. But it will not run any other custom event handlers while one event is
executing in an infinite loop.
There are some fatal errors that an iRite program can make that will completely disable the indicator. Some of these errors are
…divide by zero, string space exhausted, and array bounds violation. When they occur, the indicator stops processing and
displays a fatal error message on the display. Power must be cycled to reset the indicator.
After the indicator has been restarted, it should be put into setup mode, and a new version (without the fatal error) of the iRite
program should be loaded. If a fatal error occurs in the ProgramStartup Handler, then cycling power to the unit will only cause
the ProgramStartup Handler to be run again and repeat the fatal error.
In this case, perform a RESETCONFIGURATION. The program, along with the configuration, will be erased and set to the
defaults. This will allow the reload of the iRite program after the code that generated the fatal error has been corrected and the
program re-compiled.

1.3 Sound Programming Practices
When writing source code remember that it has two important functions: it must work and how it works must be clearly
documented. With well documented source code, a high quality product is produced that will require minimal maintenance.
iRite source code may need to be reviewed over time, long after the original author has forgotten how the program worked or
isn’t around to ask. This is why programming is done to a specific standard. The template programs, example programs, and
purchased custom programs that are available from Rice Lake Weighing Systems follow a single standard. This standard can
be downloaded at www.ricelake.com, or a new standard can be written.
The purpose of a standard is to guide programmers while creating software, when a standard is followed the source code will
be easy to follow and understand. A standard documents:

• The recommended style and form for modules, programs, and subprogram headers
• Proper naming conventions for variables and functions
• Guidelines for function size and purpose
• Commenting guidelines and coding conventions

http://www.ricelake.com/

iRite Programmer Manual

10 Visit our website www.RiceLake.com

2.0 Tutorial
The first program a programmer typically writes in every language is the “Hello World!” program. Once that has been
accomplished, the basic components will be in place and the door will be open to the imagination to start writing real world
solutions to some challenging tasks.
Below is the “Hello World!” program in iRite:
01 program HelloWorld;
02
03 begin
04 DisplayStatus("Hello, world!");
05 end HelloWorld;
This program will display the text “Hello World!” on the indicator’s display in the status message area, every time the indicator is
turned on, taken out of configuration mode or reset. Below is a description of each line:
Line 01: program HelloWorld;
The first line is the program header. It consists of the keyword program followed by the name of the program. The name of the
program is arbitrary and made up by the programmer. The program name; however, must follow the identifier naming rules
(cannot start with a number or contain a space).
Line 02:
The second line is an optional blank line. Blank lines can be placed anywhere in the program to separate important lines and to
make the program easier to read and understand.
Line 03: begin
The begin keyword is the start of the optional main code body. The optional main code body is actually the ProgramStartup
event handler. The ProgramStartup handler is the only event handler that doesn’t have to be specifically named.
Line 04: DisplayStatus("Hello, world!");
The statement DisplayStatus("Hello, world!") is the only statement in the main code body. It is a call to the built-in procedure
DisplayStatus with the string constant “Hello, world!” passed as a parameter. The result is the text, "Hello, world!" will be shown
in the status area of the display (lower left corner), whenever the startup event is fired.
Line 05: end HelloWorld;
The keyword end followed by the same identifier for the program name used in line one, HelloWorld, is required to end the
program.
Only the first and last lines are required, the program would compile, but it would do nothing. At a minimum, a working program
must have at least one event handler, though it doesn’t have to be the ProgramStartup handler. We could have written the
HelloWorld program to display “Hello, world!” whenever any key on the keypad was pressed. It would look like this:
01 program HelloWorld;
02
03 handler KeyPressed;
04 begin
05 DisplayStatus("Hello, world!");
06 end;
07
08 end HelloWorld;
In this version, the KeyPressed event handler is used to call the DisplayStatus procedure. The KeyPressed event will fire any
time any key on the keypad is pressed. Notice that the begin keyword that started the main code body, and the DisplayStatus
call have been removed and replaced with the four lines making up the KeyPressed event handler definition.
Using the Revolution editor, write the original version of the “Hello, world!” program on the system. After it has compiled the
program successfully, download it to the indicator. Once the program has been downloaded and the indicator is put back in run
mode, then the text Hello, world! should appear on the display.

https://www.ricelake.com

Tutorial

© Rice Lake Weighing Systems ● All Rights Reserved 11

2.1 Program Example with Constants and Variables
The “Hello, world!” program didn’t use any explicitly declared constants or variables (the string “Hello, world!” is actually a
constant, but not explicitly declared). Most useful programs use many constants and variables. The following program will
calculate the area of a circle for various length radii.
The program, named PrintCircleAreas, is shown below.
01 program PrintCircleAreas;
02
03 -- Declare constants and aliases here.
04 g_ciPrinterPort : constant integer := 2;
05
06 -- Declare global variables here.
07 g_iCount : integer := 1;
08 g_rRadius : real;
09 g_rArea : real;
10 g_sPrintText: string;
11
12
13 function CircleArea(rRadius : real) : real;
14 crPi : constant real := 3.141592654;
15 begin
16 -- The area of a circle is defined by: area = pi*(r^2).
17 return (crPi * rRadius * rRadius);
18 end;
19
20
21 begin
22
23 for g_iCount := 1 to 10
24 loop
25
26 g_rRadius := g_iCount;
27 g_rArea := CircleArea(g_rRadius);
28
29 g_sPrintText := "The area of a circle with radius " + RealToString(g_rRadius, 4, 1)
30 + " is " + RealToString(g_rArea, 7, 2);
31
32 WriteLn(g_ciPrinterPort, g_sPrintText);
33
34 end loop;
35
36 end PrintCircleAreas;
The PrintCircleAreas program demonstrates variables and constants as well as introducing these important ideas: for loop,
assignment statement, function declarations, function calling and return parameters, string concatenation, WriteLn procedure, a
naming convention, comments, and a couple of data conversion functions.
This program will calculate the areas of circles with radius from 1 to 10 (counting by 1s) and send text like, The area of a circle
with radius 1 is 3.14, once for each radius, out the communication port 2.
01 program PrintCircleAreas;

iRite Programmer Manual

12 Visit our website www.RiceLake.com

Line 01 is the program header with the keyword program and the program identifier PrintCircleAreas. This is the same in
theory as the HelloWorld program header.
Line 03 is a comment. In iRite all comments are started with a -- (double dash). All text after the double dash up to the end of
the line is considered a comment. Comments are used to communicate to any reader what is going on in the program on the
specific lines with the comment or immediately following the comment. The -- can start on any column in a line and can be
after, on the same line, as other valid program statements.
Line 4 is a global constant declaration for the communication port that a printer may be connected to. This simple line has many
important parts:
04 g_ciPrinterPort : constant integer := 2;
First, an identifier name is given. Identifier names are made up by the programmer and should accurately describe what the
identifier is used for. In the name g_ciPrinterPort the “PrinterPort” part tells us that this identifier will hold the value of a port
where a printer should be connected. The “g_ci” is a prefix used to describe the type of the identifier. When “g_ciPrinterPort” is
used later on in the program, the prefix may help someone reading the program, even the program’s author, to easily determine
the identifier’s data type without having to look back at the declaration.
The “g_” in the prefix helps tell us that the identifier is “global”. Global identifiers are declared outside of any subprogram
(handler, function, procedure) and have global scope. The term “scope” refers to the region of the program text in which the
identifier is known and understood. The term “global” means that the identifier is “visible” or “known” everywhere in the program.
Global identifiers can be used within an event handler body, or any procedure or function body. Global identifiers also have
“program duration”. The duration of an identifier refers to when or at what point in the program the identifier is understood, and
when their memory is allocated and freed. Identifiers with global duration, in the indicator program, are understood in all text
regions of the program, and their memory is allocated at program start-up and is re-allocated when the indicator is powered up.
The “c” in the prefix helps us recognize that the identifier is a constant. Constants are a special type of identifier that are
initialized to a specific value in the declaration and may not be changed anytime or anywhere in the program. Constants are
declared by adding the keyword constant before the type.
Constants are very useful and make the program more understandable. In this example, we defined the printer port as port 2. If
we would have just used the number 2 in the call to WriteLn, then a reader of the program would not have any idea that the
programmer intended a printer to be connected to the programmable indicator’s port 2.
Also, in a larger program, port 2 may be used hundreds of times in Write and WriteLn calls. Then, if it were decided to change
the printer port from port 2 to port 3, hundreds of changes would have to be made. With port 2 being a constant, only one
change in the declaration of g_ciPrinterPort would be required to change the printer port from 2 to 3.
The type of the constant is an integer. The “i” in the prefix helps us identify g_ciPrinterPort as an integer. The keyword integer
follows the keyword constant and specifies the type compatibility of the identifier as an integer and also determines how much
memory will be required to store the value (a value of 2 in this example). In the iRite programming language, there are only 3
basic data types: integer, real and string.
The initialization of the constant is accomplished with the “:= 2” part of the statement. Initialization of constants is done in the
declaration, with the assignment operator, :=, followed by the initial value.
Finally, the statement is terminated by a semicolon. The “;” is used in iRite and other languages as a statement terminator and
separator. Every statement must be terminated with a semicolon. Do not read this to mean “every line must end in a
semicolon”; this is not true. A statement may be written on one line, but it is usually easier to read if the statement is broken
down into enough lines to make some keywords stand out and to keep the length of each line less than 80 characters.
Some statements contain one or more other statements.

Example: g_ciPrinterPort : constant integer := 2;
The above is an example of a simple statement that easily fit on one line of code. The loop statement in the program startup
handler (main code body) is spread out over several lines and contains many additional statements. It does, however, end with
line end loop;, and ends in a semicolon.
06 -- Declare global variables here.
07 g_iCount : integer := 1;
08 g_rRadius : real;
09 g_rArea : real;
10 g_sPrintText: string;

https://www.ricelake.com

Tutorial

© Rice Lake Weighing Systems ● All Rights Reserved 13

Line 6 is another comment to let us know that the global variables are going to be declared.
Lines 7—10 are global variable declarations. One integer, g_iCounter, two reals, g_rRadius and g_rArea, and one string,
g_sPrintText, are needed during the execution of this program. Like the constant g_ciPrinterPort, these identifiers are global in
scope and duration; however, they are not constants. They may have an optional initial value assigned to them, but it is not
required. Their value may be changed any time they are “in scope”, they may be changed in every region of the program
anytime the program is loaded in the indicator.
Lines 13—18 are our first look at a function declaration. A function is a subprogram that can be invoked (or called) by other
subprograms. In the PrintCircleAreas program, the function CircleArea is invoked in the program startup event handler. The
radius of a circle is passed into the function when it is invoked. In iRite there are three types of subprograms: functions,
procedures, and handlers.
13 function CircleArea(rRadius : real) : real;
14 crPi : constant real := 3.141592654;
15 begin
16 -- The area of a circle is defined by: area = pi*(r^2).
17 return (crPi * rRadius * rRadius);
18 end;
On line 13, the function declaration starts with the keyword function followed by the function name. The function name is an
identifier chosen by the programmer. We chose the name “CircleArea” for this function because the name tells us that we are
going to return the area of a circle. Our function CircleArea has an optional formal arguments (or parameters) list. The formal
argument list is enclosed in parenthesis, like this: (rRadius : real). Our example has one argument, but functions and
procedures may have zero or more.
Argument declarations must be separated by a semicolon. Each argument is declared just like any other variable declaration:
starting with an identifier followed by a colon followed by the data type. The exception is that no initialization is allowed.
Initialization wouldn’t make sense, since a value is passed into the formal argument each time the function is called (invoked).
The rRadius parameters are passed by value. This means that the radius value in the call is copied in rRadius. If rRadius is
changed, there is no effect on the value passed into the function. Unlike procedures, functions may return a value. Our function
CircleArea returns the area of a circle. The area is a real number. The data type of the value returned is specified after the
optional formal argument list. The type is separated with a colon, just like in other variable declarations, and terminated with a
semicolon.
Up to this point in our program, we have only encountered global declarations. On line 14 we have a local declaration. A local
declaration is made inside a subprogram and its scope and duration are limited. So the declaration: crPi : constant real :=
3.141592654; on line 14 declares a constant real named crPi with a value of 3.141592654. The identifier crPi is only known—
and only has meaning—inside the text body of the function CircleArea. The memory for crPi is initialized to the value
3.141592654 each time the function is called.
Line 15 contains the keyword begin and signals the start of the function code body. A function code body contains one or more
statements.
Line 16 is a comment that explains what we are about to do in line 17. Comments are skipped over by the compiler, and are not
considered part of the code. This doesn’t mean they are not necessary; they are, but are not required by the compiler.
Every function must return a value. The value returned must be compatible with the return type declared on line 14. The
keyword return followed by a value, is used to return a value and end execution of the function. The return statement is always
the last statement a function runs before returning. A function may have more than one return statement, one in each
conditional execution path; however, it is good programming practice to have only one return statement per function and use a
temporary variable to hold the value of different possible return values.
The function code body, or statement lists, is terminated with the end keyword on line 18.

iRite Programmer Manual

14 Visit our website www.RiceLake.com

In this program we do all the work in the program startup handler. We start this unnamed handler with the begin keyword on
line 21.
23 for g_iCount := 1 to 10
24 loop
25
26 g_rRadius := g_iCount;
27 g_rArea := CircleArea(g_rRadius);
28
29 g_sPrintText := "The area of a circle with radius " + RealToString(g_rRadius, 4, 1)
30 + " is " + RealToString(g_rArea, 7, 2);
31
32 WriteLn(g_ciPrinterPort, g_sPrintText);
33
34 end loop;
On line 23 we see a for loop to start the first statement in the startup handler. In iRite there are two kinds of looping constructs.
The for loop and the while loop. For loops are generally used when you want to repeat a section of code for a predetermined
number of times. Since we want to calculate the area of 10 different circles, we chose to use a for loop.
For loops use an optional iteration clause that starts with the keyword for followed by the name of variable, followed by an
assignment statement, followed by the keyword to, then an expression, and finally an optional step clause. Our example
doesn’t use a step clause, but instead uses the implicit step of 1. This means that lines 26 through 32 will be executed ten
times. The first time g_iCount will have a value of 1, and during the last iteration, g_iCount will have a value of 10.
All looping constructs (the for and the while) start with the keyword loop and end with the keywords end loop, followed by a
semicolon. In our example, loop is on line 24 and end loop is on line 34. In between these two, are found, the statements that
make up the body of the loop.
Line 26 is an assignment of an integer data type into a real data type. This line is unnecessary and the assignment could have
been made automatically if the integer g_iCount was passed into the function CircleArea directly on line 27, since CircleArea is
expecting a real value. Calls to functions like CircleArea are usually done in an assignment statement if the functions return
value need to be used later in the program. The return value of CircleArea (the area of a circle with radius g_rRadius) is stored
in g_rArea.
The assignment on lines 29 and 30 uses two lines strictly for readability. This single assignment statement does quite a bit. We
are trying to create a string of plain English text that will say: “The area of a circle with radius xx.x is yyyy.yy”, where the radius
value will be substituted for xx.x and the calculated area will be substituted for yyyy.yy. The global variable g_sPrintText is a
string data type. The constants (or literals): “The area of a circle with radius ” and “ is ” are also strings.
However, g_rRadius and g_iArea are real values. We had to use a function from the API to convert the real values to strings.
The API function RealToString is passed a real and a width integer and a precision integer. The width parameter specifies the
minimum length to reserve in the string for the value. The precision parameter specifies how many places to report to the right
of the decimal place. To concatenate all the small strings into one string we use the string concatenation operator, “+”.
Finally, we want to send the new string we made to a printer. The Write and WriteLn procedures from the API send text data to
a specified port. Earlier in the program we decided the printer port will be stored in g_ciPrinterPort. So the WriteLn call on line
32 send the text stored in g_sPrintText, followed by a carriage return character, out port 2.
If we had a printer connected to port 2 on the programmable indicator, every time the program startup handler is fired, we would
see the following printed output:

The area of a circle with radius 1.0 is 3.14
The area of a circle with radius 2.0 is 12.57
The area of a circle with radius 3.0 is 28.27
The area of a circle with radius 4.0 is 50.27
The area of a circle with radius 5.0 is 78.54
The area of a circle with radius 6.0 is 113.10
The area of a circle with radius 7.0 is 153.94
The area of a circle with radius 8.0 is 201.06
The area of a circle with radius 9.0 is 254.47
The area of a circle with radius 10.0 is 314.16

https://www.ricelake.com

Language Syntax

© Rice Lake Weighing Systems ● All Rights Reserved 15

3.0 Language Syntax
This section provides an overview of language syntax for the iRite software.

3.1 Lexical Elements
For details about lexical elements, see the following information:
3.1.1 Identifiers
An identifier is a sequence of letters, digits, and underscores. The first character of an identifier must be a letter or an
underscore, and the length of an identifier cannot exceed 100 characters. Identifiers are not case-sensitive: “HELLO” and
“hello” are both interpreted as “HELLO”.

Examples:
Valid identifiers: Variable12

_underscore
Std_Deviation

Not valid identifiers: 9abc First character must be a letter or an underscore.
ABC DEF Space (blank) is not a valid character in an identifier.

Identifiers are used by the programmer to name programs, data types, constants, variables, and subprograms.
They can be named anything as long as they follow the rules above and the identifiers are not already used as a keyword or as
a built-in type or built-in function. Identifiers provide the name of an entity. Names are bound to program entities by declarations
and provide a simple method of entity reference. For example, an integer variable iCounter (declared iCounter : integer) is
referred to by the name iCounter.

3.1.2 Keywords
Keywords are special identifiers that are reserved by the language definition and can only be used as defined by the language.
The keywords are listed below for reference purposes. More detail about the use of each keyword is provided later in this
manual.

3.1.3 Constants
Constants are tokens representing fixed numeric or character values and are a necessary and important part of writing code.
Here we are referring to constants placed in the code when a value or string is known at the time of programming and will never
change once the program is compiled. The compiler automatically figures out the data type for each constant.

NOTE: Be careful not to confuse the constants in this discussion with identifiers declared with the keyword constant,
although they may both be referred to as constants.

The three types of constants are defined by the language as described in the following sections.

Constant Integer
A constant integer is a sequence of decimal digits. The value of constant integer is limited to the range 0…231 – 1 (+/-
2,147,483,647). Any values outside the allowed range are silently truncated.
Any time a whole number is used in the text of the program, the compiler creates a constant integer.

and array begin builtin constant database
else elseif end exit for function
handler if integer is loop mod
not of or procedure program real
record return step stored string then
to type var while

iRite Programmer Manual

16 Visit our website www.RiceLake.com

Constant Real
A constant real is a constant integer immediately followed by a decimal point and another constant integer. Constant Reals
conform to the requirements of IEEE-754 for double-precision floating point values. When the compiler sees a number in the
format n.n then a constant real is created.
Using the value .56 would generate a compiler error. Instead compose constant reals between –1 and +1 with a leading zero
like this: 0.56 and –0.667.

Constant String
A constant string is a sequence of printable characters delimited by quotation marks (double quotes, " "). The maximum length
allowed for a constant string is 1000 characters, including the delimiters.

3.1.4 Delimiters
Delimiters include all tokens other than identifiers and keywords, including the arithmetic operators listed below:

Below is a functional grouping of all of the delimiters in iRite.

Punctuation
Parentheses
() (open and close parentheses) group expressions, isolate conditional expressions, and indicate function parameters:

iFarenheit := ((9.0/5.0) * iCelcius) + 32; -- enforce proper precedence
if (iVal >= 12) and (iVal <= 34) or (iMaxVal > 200) -- conditional expr.
EnableSP(5); -- function parameters

Brackets
[] (open and close brackets) indicate single and multidimensional array subscripts:

type CheckerBoard is array [8, 8] of recSquare;
iThirdElement := aiValueArray[3];

Comma
The comma(,) separates the elements of a function argument list and elements of a multidimensional array:

type Matrix is array [4,8] of integer;
GetFilteredCount(iScale, iCounts);

Semicolon
The semicolon (;) is a statement terminator. Any legal iRite expression followed by a semicolon is interpreted as a statement.
Colon
The colon (:) is used to separate an identifier from its data type. The colon is also used in front of the equal sign (=) to make the
assignment operator:

function GetAverageWeight(iScale : integer) : real;
iIndex : integer;
csCopyright : constant string := "2002 Rice Lake Weighing Systems";

Quotation Mark
Quotation marks ("") are used to signal the start and end of string constants:

if sCommand = "download data" then
 Write(iPCPort, "Data download in progress. Please wait…");

>= <= <> := >< = + – * /
. , ; : () [] ''

https://www.ricelake.com

Language Syntax

© Rice Lake Weighing Systems ● All Rights Reserved 17

Relational Operators
Greater than (>)
Greater than or equal to (>=)
Less than (<)
Less than or equal to (<=)

Equality Operators
Equal to (=)
Not equal to (<>)

The relational and equality operators are only used in an if expression. They may only be used between two objects of
compatible type, and the resulting construct will be evaluated by the compiler to be either true or false;

if iPointsScored = 6 then
if iSpeed > 65 then
if rGPA <= 3.0 then
if sEntry <> "2" then
NOTE: Be careful when using the equal to (=) operator with real data. Because of the way real data is stored and the
amount of precision retained, it may not contain what would be expected.

Example, given a real variable named rTolerance:
rTolerance := 10.0 / 3.0
…
if rTolerance * 3 = 10 then

-- do something
end if;

NOTE: The evaluation of the if statement will resolve to false. The real value assigned to rTolerance by the expression
10.0 / 3.0 will be a real value (3.333333) that, when multiplied by 3, is not quite equal to 10.

Logical Operators
These are keywords and not delimiters. In iRite the logical operators are and, or, and not. They are named logical and, logical
or, and logical negation respectively. They are only used in an if expression and can only be used with expressions or values
that evaluate to true or false.

if (iSpeed > 55) and (not flgInterstate) or (strOfficer = "Cranky") then
 sDriverStatus := "Busted";

iRite Programmer Manual

18 Visit our website www.RiceLake.com

Arithmetic Operators
The arithmetic operators (+, – ,* , /, and mod) are used in expression to add, subtract, multiply, and divide integers and real
values. Multiplication and division take precedence over addition and subtraction. A sequence of operations with equal
precedence is evaluated from left to right.
The keyword mod is not a delimiter, but is included here because it is also an arithmetic operator. The modulus (or remainder)
operator returns the remainder when operand 1 is divided by operand 2.

Example:
rResult : 7 mod 3; -- rResult should equal 1

 NOTE: Both division (/) and mod operations can cause the fatal divide-by-zero error if the second operand is zero.

When using the divide operator with integers, be careful of losing significant digits.
Example: If dividing a smaller integer by a larger integer then the result is an integer zero: 4/7 = 0. If planning to
assign the result to a real like in the following example:

rSlope : real;
rSlope := 4/7;

rSlope will still equal 0, not 0.571428671 as might be expected. This is because the compiler does integer math when both
operands are integers, and stores the result in a temporary integer. To make the previous statement work in iRite, one of the
operands must be a real data type or one of the operands must evaluate to a real.
So write the assignment statement like:

rSlope := 4.0/7;
If dividing two integer variables, multiply one of the operands by 1.0 to force the compile to resolve the expression to a real:

rSlope : real;
iRise : integer := 4;
iRun : integer := 7;
rSlope := (iRise * 1.0) / iRun;

Now rSlope will equal 0.571428671.
NOTE: The plus sign (+) is also used as the string concatenation operator. The minus sign (–) is also used as a unary
minus operator that has the result equal to the negative of its operand.

Assignment Operator (:=)
The assignment operator is used to assign a value to a compatible program variable or to initialize a constant. The value on the
left of the “:=” must be a modifiable value.

Invalid examples:
3 := 1 + 1; -- not valid
ciMaxAge := 67; -- where ciMaxAge was declared with keyword constant
iInteger := "This is a string, not an integer!"; -- incompatible types

Structure Member Operator (“dot”)
The “dot” (.) is used to access the name of a field of a record or database types.

https://www.ricelake.com

Language Syntax

© Rice Lake Weighing Systems ● All Rights Reserved 19

3.2 Program Structure
A program is delimited by a program header and a matching end statement. The body of a program contains a declarations
section, which may be empty, and an optional main code body. The declaration section and the main code body may not both
be empty.

<program>:
program IDENTIFIER ’;’

<decl-section>
<optional-main-body>

end IDENTIFIER ’;’
;

<optional-main-body>:
/* NULL */

| begin <stmt-list>
;

Figure 3-1. Program Statement Syntax

The declaration section contains declarations defining global program types, variables, and subprograms. The main code body,
if present, is assumed to be the declaration of the program startup event handler. A program startup event is generated when
the instrument personality enters operational mode at initial power-up and when exiting setup mode.

Example:
program MyProgram;

KeyCounter : Integer;
 handler AnyKeyPressed;
 begin

 KeyCounter := KeyCounter + 1;
 end;

begin
KeyCounter := 0

end MyProgram;
The iRite language requires declaration before use so the order of declarations in a program is very important. The declaration
before use requirement is imposed to prevent recursion, which is difficult for the compiler to detect.
In general, it make sense for certain types of declarations to always come before others types of declarations. For example,
functions and procedures must always be declared before the handlers. Handlers cannot be called or invoked from within the
program, only by the event dispatching system. But functions and procedures can be called from within event handlers;
therefore, always declare the functions and procedures before handlers.

PROGRAM IDENTIFIER ;

END IDENTIFIER ;

decl-section optional-main-body

iRite Programmer Manual

20 Visit our website www.RiceLake.com

Another example would be to always declare constants before type definitions. This way you can size an array with named
constants.

Example program with a logical ordering for various elements:
program Template; -- program name is always first!
-- Put include (.iri) files here.
#include template.iri

 -- Constants and aliases go here.
 g_csProgName : constant string := "Template Program";
 g_csVersion : constant string := "0.01";

 g_ciArraySize : integer := 100;
 -- User defined type definitions go here.
 type tShape is (Circle, Square, Triangle, Rectangle, Octagon, Pentagon, Dodecahedron);
 type tColor is (Blue, Red, Green, Yellow, Purple);
 type tDescription is
 record
 eColor : tColor;
 eShape : tShape;
 end record;
 type tBigArray is array [g_ciArraySize] of tDescription;

 -- Variable declarations go here.

 g_iBuild : integer;
 g_srcResult : SysCode;

 g_aArray : tBigArray;
 g_rSingleRecord : tDescription;

 -- Start functions and procedures definitions here.

 function MakeVersionString : string;
 sTemp : string;
 begin
 if g_iBuild > 9 then
 sTemp := ("Ver " + g_csVersion + "." + IntegerToString(g_iBuild, 2));
 else
 sTemp := ("Ver " + g_csVersion + ".0" + IntegerToString(g_iBuild, 1));
 end if;

 return sTemp;
 end;

 procedure DisplayVersion;
 begin
 DisplayStatus(g_csProgName + " " + MakeVersionString);
 end;
 -- Begin event handler definitions here.
 handler User1KeyPressed;

 begin
 DisplayVersion;
 end;

-- This chunk of code is the system startup event handler.
begin

 -- Initialize all global variables here.
 -- Increment the build number every time you make a change to a new version.
 g_iBuild := 3;

 -- Display the version number to the display.
 DisplayVersion;

end Template;

https://www.ricelake.com

Language Syntax

© Rice Lake Weighing Systems ● All Rights Reserved 21

3.3 Declarations
For declaration details, see the following information:
3.3.1 Type Declarations
Type declarations provide the mechanism for specifying the details of enumeration and aggregate types. The identifier
representing the type name must be unique within the scope in which the type declaration appears. All user-defined types must
be declared prior to being used.

<type-declaration>:
type IDENTIFIER is <type-definition> ';'

;
<type-definition>:

<record-type-definition>
| <array-type-definition>
| <database-type-definition>
| <enum-type-definition>
;

Figure 3-2. Type Declaration Syntax

Figure 3-3. Identifier Syntax

Figure 3-4. Type Declaration Syntax

TYPE IDENTIFIER ; IS type-definition

IDENTIFIER : stored-option constant-option type

type-declaration

variable-declaration

procedure-declaration

function-declaration

handler-declaration

optional-initial-value ;

iRite Programmer Manual

22 Visit our website www.RiceLake.com

Enumeration Type Definitions
An enumeration type definition defines a finite ordered set of values. Each value, represented by an identifier, must be unique
within the scope in which the type definition appears.

<enum-type-definition>:
'(' <identifier-list> ')'

;
<identifier-list>:

IDENTIFIER
| <identifier-list> ',' IDENTIFIER
;

Examples:
type StopLightColors is (Green, Yellow, Red);

type BatchStates is (NotStarted, OpenFeedGate, CloseGate, WaitforSS, PrintTicket, AllDone);

Record Type Definitions
A record type definition describes the structure and layout of a record type. Each field declaration describes a named
component of the record type. Each component name must be unique within the scope of the record; no two components can
have the same name. Enumeration, record and array type definitions are not allowed as the type of a component: only
previously defined user- or system-defined type names are allowed.

<record-type-definition>:
record

<field-declaration-list>
end record

;
<field-declaration-list>:

<field-declaration>
| <field declaration-list>

<field declaration>
;

<field-declaration>:
IDENTIFIER ':' <type> ';'

;

Figure 3-5. Record Type Definition Syntax

Examples:
type MyRecord is

record
A : integer;
B : real;

end record;

RECORD END RECORDfield-declaration-list

https://www.ricelake.com

Language Syntax

© Rice Lake Weighing Systems ● All Rights Reserved 23

The EmployeeRecord record type definition, below, incorporates two enumeration type definitions, tDepartment and tEmptype:
type tDepartment is (Shipping, Sales, Engineering, Management);

type tEmptype is (Hourly, Salaried);

type EmployeeRecord is
record

ID : integer;
Last : string;
First : string;
Dept : tDepartment;
EmployeeType : tEmptype;

end record;

Database Type Definitions
A database type definition describes a database structure, including an alias used to reference the database.

<database-type-definition>:
database (STRING_CONSTANT)

<field-declaration-list>
end database

;
<field-declaration-list>:

<field-declaration>
| <field declaration-list>

<field declaration>
;

<field-declaration>:
IDENTIFIER ':' <type> ';'

;

Figure 3-6. Database Type Definition Syntax

Example: A database consisting of two fields, an integer field and a real number, could be defined as follows:
type MyDB is

database ("DBALIAS")
A : integer
B : real

end database;
;

DATABASE

END DATABASE

field-declaration-listSTRING-CONSTANT()

iRite Programmer Manual

24 Visit our website www.RiceLake.com

Array Type Definitions
An array type definition describes a container for an ordered collection of identically typed objects. The container is organized
as an array of one or more dimensions. All dimensions begin at index 1.

<array-type-definition>:
array '[' <expr-list> ']' of <type>

;

Figure 3-7. Array Type Definition Syntax

Examples:
type Weights is array [25] of Real;

An array consisting of user-defined records could be defined as follows:
type Employees is array [100] of EmployeeRecord;

A two-dimensional array in which each dimension has an index range of 10 (1…10), for a total of 100 elements could be defined
as follows:

type MyArray is array [10,10] of Integer;
NOTE: In all of the preceding examples, no variables (objects) are created, no memory is allocated by the type definitions.
The type definition only defines a type for use in a later variable declaration, at which time memory is allocated.

3.3.2 Variable Declarations
A variable declaration creates an object of a particular type. The type specified must be a previously defined user- or system-
defined type name. The initial value, if specified, must be type-compatible with the declared object type. All user-defined
variables must be declared before being used.
Variables declared with the keyword stored cause memory to be allocated in battery-backed RAM. Stored data values are
retained even after the indicator is powered down.
Variables declared with the keyword constant must have an initial value.

<variable-declaration>:
IDENTIFIER ':' <stored-option> <constant-option> <type>
<optional-initial-value>

;
<stored-option>:

/* NULL */
| stored
;

<constant-option>:
/* NULL */

| constant
;

<optional-initial-value>:
/* NULL */

| := <expr>
;

Example:
MyVariable : StopLightColor; -- Declare MyVariable
MyCount : stored Integer; --Declare a stored variable of type Integer

ARRAY ENDexpr-list type[]

https://www.ricelake.com

Language Syntax

© Rice Lake Weighing Systems ● All Rights Reserved 25

3.3.3 Subprogram Declarations
A subprogram declaration defines the formal parameters, return type, local types and variables, and the executable code of a
subprogram. Subprograms include handlers, procedures, and functions.

Handler Declarations
A handler declaration defines a subprogram that is to be installed as an event handler. An event handler does not permit
parameters or a return type, and can only be invoked by the event dispatching system.

<handler-declaration>:
handler IDENTIFIER ';'

<decl-section>
begin

<stmt-list>
end ';'

;

Figure 3-8. Handler Declaration Syntax

Example:
handler SP1Trip;

I : Integer;

begin
for I := 1 to 10
loop

Writeln (1, "Setpoint Tripped!");
if I=2 then

return;
endif;

end loop;
end;

HANDLER IDENTIFIER decl-section;

stmt-list ;BEGIN END

iRite Programmer Manual

26 Visit our website www.RiceLake.com

Procedure Declarations
A procedure declaration defines a subprogram that can be invoked by other subprograms. A procedure allows parameters but
not a return type. A procedure must be declared before it can be referenced; recursion is not supported.

<procedure-declaration>:
procedure IDENTIFIER
<optional-formal-args> ';'
<decl-section>
begin
<stmt-list>
end ';'

;
<optional-formal-args>:

/* NULL */
| <formal-args>
;

<formal-args>:
'(' <arg-list> ')'

;
<arg-list>:

<optional-var-spec>
<variable-declaration>

| <arg-list> ';' <optional-var-spec>
<variable-declaration>

;
<optional-var-spec>:

/* NULL */
| var
;

Figure 3-9. Procedure Declaration Syntax

Examples:
procedure PrintString (S : String);
begin

Writeln (1, "The String is => ",S);
end;

procedure ShowVersion;
begin

DisplayStatus ("Version 1.42");
end;

procedure Inc (var iVariable : Integer);
begin

iVariable := iVariable + 1;
end;

PROCEDURE IDENTIFIER optional-formal-args subprogram-completion

https://www.ricelake.com

Language Syntax

© Rice Lake Weighing Systems ● All Rights Reserved 27

Function Declarations
A function declaration defines a subprogram that can be invoked by other subprograms. A function allows parameters and
requires a return type. A function must be declared before it can be referenced; recursion is not supported. A function must
return to the point of call using a return-with-value statement.

<function-declaration>:
function IDENTIFIER
<optional-formal-args> ':' <type> ';'
<decl-section>
begin
<stmt-list>
end ';'

;

Figure 3-10. Function Declaration Syntax

Examples:
function Sum (A : integer; B : integer) : Integer;
begin

return A + B;
end;

function PoundsPerGallon : Real;
begin

return 8.34;
end;

3.4 Statements
There are only six discrete statements in iRite. Some statements, like the if, call, and assignment (:=) are used extensively
even in the simplest program, while the exit statement should be used rarely. The if and the loop statements have variations
and can be quite complex.

<stmt>:
<assign-stmt>

| <call-stmt>
| <if-stmt>
| <return-stmt>
| <loop-stmt>
| exit-stmt>
;

FUNCTION IDENTIFIER optional-formal-args

subprogram-completion

:

type

iRite Programmer Manual

28 Visit our website www.RiceLake.com

3.4.1 Assignment Statement

Figure 3-11. Assignment Statement Syntax

The assignment statement uses the assignment operator (:=) to assign the expression on the right-hand side to the object or
component on the left-hand side. The types of the left-hand and right-hand sides must be compatible. The value on the left of
the “:=” must be a modifiable value.

Examples:
Simple assignments:

iMaxPieces := 12000;
rRotations := 25.3456;
sPlaceChickenPrompt := "Please place the chicken on the scale…";

Assignments in declarations (initialization):
iRevision : integer := 1;
rPricePerPound : real := 4.99;
csProgramName : constant string := "Pig and Chicken Weigher";

Assignments in for loop initialization:
for iCounter := 1 to 25
for iTries := ciFirstTry to ciMaxTries

Assignment of function return value:
sysReturn := GetSPTime(4, dtDateTime);
rCosine := Cos(1.234);

Assignment with complex expression on right-hand side:
iTotalLivestock := iNumChickens + iNumPigs + GetNumCows;
rTotalCost := ((iNumBolt * rBoltPrice) + (iNumNuts * rNutPrice)) * (1 + rTaxRate);
sOutputText := The total cost is : " + RealToString(rTotalCost, 4, 2) + " dollars.";

Assignment of different but compatible types:
iValue := 34.867; -- Loss of significant digits! iValue will equal 34, no rounding!
rDegrees := 212; -- No problem! rDegrees will equal 212.000000000000000000

3.4.2 Call Statement
The call statement is used to initiate a subprogram invocation. The number and type of any actual parameters are compared
against the number and type of the formal parameters that were defined in the subprogram declaration. The number of
parameters must match exactly. The types of the actual and formal parameters must also be compatible. Parameter passing is
accomplished by copy-in, or by copy-in/copy-out for var parameters.

<call-stmt>:
<name> ';'

;
Copy-in refers to the way value parameters are copied into their corresponding formal parameters. The default way to pass a
parameter in iRite is by value, which means that a copy of the actual parameter is made to use in the function or procedure. The
copy may be changed inside the function or procedure but these changes will never affect the value of the actual parameter
outside of the function or procedure, since only the copy may be changed.
The other way to pass a parameter is to use a copy-in/copy-out method. To specify this method, a formal parameter must be
preceded by the keyword var (variable) in the subprogram declaration. This means the parameter may be changed. Just like
with a value parameter, a copy is made. When the function or procedure is done executing, the value of the copy is then
copied, or assigned, back into the actual parameter. This is the copy-out part. The result is that if the formal var parameter was
changed within the subprogram, then the actual parameter will also be changed after the subprogram returns. Actual var
parameters must be values: a constant cannot be passed as a var parameter.

expr :=

https://www.ricelake.com

Language Syntax

© Rice Lake Weighing Systems ● All Rights Reserved 29

A potential issue occurs when passing a global parameter as a var parameter. If a global parameter is passed to a function or
procedure as a var parameter, then the system makes a copy of it to use in the function body. If the value of the formal
parameter is changed and some other function or procedure call is made after the change to the formal parameter, the function
or procedure called uses, by name, the same global parameter that was passed into the original function. Then the value of the
global parameter in the second function will be the value of the global when it was pass into the original function. This is
because the changes made to the formal parameter (only a copy of the actual parameter passed in) have not yet been copied-
out, since the function or procedure has not returned yet.

Example:
program GlobalAsVar;

g_ciPrinterPort : constant integer := 2;

g_sString : string := "Initialized, not changed yet";

 procedure PrintGlobalString;
 begin
 WriteLn(g_ciPrinterPort, g_sString);
 end;

 procedure SetGlobalString (var vsStringCopy : string);
 begin

 vsStringCopy := "String has been changed";

 Write(g_ciPrinterPort, "In function call: ");
 PrintGlobalString;

 end;
begin
 Write(g_ciPrinterPort, "Before function call: ");
 PrintGlobalString;

 SetGlobalString(g_sString);

 Write(g_ciPrinterPort, "After function call: ");
 PrintGlobalString;

end GlobalAsVar;
When run, the program prints the following:

Before function call: Initialized, not changed yet
In function call: Initialized, not changed yet
After function call: String has been changed

iRite Programmer Manual

30 Visit our website www.RiceLake.com

3.4.3 If Statement

Figure 3-12. If Statement Syntax

The if statement is one of the programmer’s most useful tools. The if statement is used to force the program to execute
different paths based on a decision. In its simplest form, the if statement looks like this:

if <expression> then
<statement list>

end if;
The decision is made after evaluating the expression. The expression is most often a conditional expression. If the expression
evaluates to true, then the statements in <statement list> are executed. This form of the if statement is used primarily to only
do something if a certain condition is true.

Example:
if iStrikes = 3 then
 sResponse := "You’re out!";
end if;

Figure 3-13. Optional Else Statement Syntax

Another form of the if statement, known as the if-else statement has the general form:
if <expression> then
 <statement list 1>
else
 <statement list 2>
end if;

The if-else is used when the program must decide which of exactly two different paths of execution must be executed. The path
that will execute the statement or statements in <statement list 1> will be chosen if <expression> evaluates to true.

Example:
if iAge => 18 then
 sStatus := "Adult";
else
 sStatus := "Minor";

end if;

optional-elsif-list

IF

END

expr THEN

optional-else-part

IF

stmt-list

;

stmt-list ELSE

https://www.ricelake.com

Language Syntax

© Rice Lake Weighing Systems ● All Rights Reserved 31

If the statement is false, then the statement or statements in <statement list 2> will be executed. Once the expression is
evaluated and one of the paths is chosen, the expression is not evaluated again. This means the statement will terminate after
one of the paths has been executed.

Example: If the expression was true and we were executing <statement list 1>, and within the code in
<statement list 1> we change some part of <expression> so it would at that moment evaluate to false,
<statement list 2> would still not be executed. This point is more relevant in the next form called the if-elsif.

Figure 3-14. Optional Else-If Statement Syntax

The if-elsif version is used when a multi-way decision is necessary and has this general form:
if <expression> then
 <statement list 1>
elsif <expression> then
 <statement list 2>
elsif <expression> then
 <statement list 3>
elsif <expression> then
 <statement list 4>
else
 <statement list 5>
end if;

Example:
if rWeight <= 2.0 then
 iGrade := 1;
elsif (rWeight > 2.0) and (rWeight < 4.5) then
 iGrade := 2;
elsif (rWeight > 4.5) and (rWeight < 9.25) then
 iGrade := 3;
elsif (rWeight > 9.25) and (rWeight < 11.875) then
 iGrade := 4;
else
 iGrade := 0;
 sErrorString := "Invalid Weight!";
end if;

ELSIF expr stmt-list THEN

iRite Programmer Manual

32 Visit our website www.RiceLake.com

3.4.4 Loop Statement

Figure 3-15. Loop Statement Syntax

The loop statement is used to execute a statement list 0 or more times. An optional expression is evaluated and the statement
list is executed. The expression is then re-evaluated and as long as the expression is true the statements will continue to get
executed. The loop statement in iRite has three general forms. One way is to write a loop with no conditional expression. The
loop will keep executing the loop body (the statement list) until the exit statement is encountered. The exit statement can be
used in any loop, but is most often used in this version without a conditional expression to evaluate. It has this form:

loop
<statement list>
end loop;

This version is most often used with an if statement at the end of the statement list. This way the statement list will always
execute at least once. This is referred to as a loop-until.

Example:
rGrossWeight : real;

loop
 WriteLn(2, "I’m in a loop.");
 GetGross(1, Primary, rGrossWeight);
 if rGrossWeight > 200 then
 exit;
 end if;
end loop;

A similar version uses an optional while clause at the start of the loop. The while-loop version is used when the loop is to
execute zero or more times. Since the expression is evaluated before the loop is entered, the statement list may not get
executed even once. Here is the general form for the while-loop statement:

while <expression>
loop

<statement list>
end loop;

Example: from above, the statement has a while clause. If the gross weight is greater than 200 pounds then the
loop body will never execute:

rGrossWeight : real;

GetGross(1, Primary, rGrossWeight);

while rGrossWeight <= 200
loop

 WriteLn(2, "I’m in a loop.");
 GetGross(1, Primary, rGrossWeight);

end loop;
Example: the weight must be known before we could evaluate the expression. In addition we have to get the
weight in the loop. In this example, it would be better programming to use the loop-until version.

END LOOP

stmt-list

;

LOOP optional-iteration-clause

https://www.ricelake.com

Language Syntax

© Rice Lake Weighing Systems ● All Rights Reserved 33

Another version is known as the for-loop. The for-loop is best used when you want to execute a chunk of code for a known or
predetermined number of times. In its general form the for-loop looks like this:

for <name> := <expression> to <expression> step <expression>
loop

<statement list>
end loop;

Figure 3-16. Optional Loop Iteration Clause Syntax

The optional step clause can be omitted if <name> is to increment by 1 after each run of the statement list. To increment
<name> by 2 or 3, or decrement it by 1 or 2, then use the step clause. The step expression (–1 in the second example below)
must be a constant.

for iCount := 97 to 122
loop

 strAlpha := strAlpha + chr$(iCount);
end loop;

for iCount := 10 to 0 step -1
loop

 if iCount = 0 then
 strMissionControl := "Blast off!";
 else
 strMissionControl := IntegerToString(iCount, 2);
 end if;

end loop;

Figure 3-17. Optional Step Clause Syntax

NOTE: Use caution when designing loops to ensure that an infinite loop is not created. If the program encounters an
infinite loop, only the loop will run; subsequent queued events will not be run.

expr

optional-step-clause

FOR

WHILE expr

name TO expr :=

STEP expr

iRite Programmer Manual

34 Visit our website www.RiceLake.com

3.4.5 Return Statement
The return statement can only be used inside of subprograms (functions, procedures, and event handlers). The return
statement in procedures and handlers cannot return a value. An explicit return statement inside a procedure or handler is not
required since the compiler will insert one if the return statement is missing. To return from a procedure or handler before the
code body is done executing, use the return statement to exit at that point.

procedure DontDoMuch;
begin
if PromptUser("circle: ") <> SysOK then
 return;
 end if;
end;

Functions must return a value and an explicit return statement is required. The data type of the expression returned must be
compatible with the return type specified in the function declaration.

function Inc(var viNumber : integer) : integer;
begin
 viNumber := viNumber + 1;
 return viNumber;
end;

It is permissible to have more than one return statement in a subprogram, but not recommended. In most instances it is better
programming practice to use conditional execution (using the if statement) with one return statement at the end of the function
than it is to use a return statement multiple times. Return statements liberally dispersed through a subprogram body can result
in dead code (code that never gets executed) and hard-to-find bugs.

Figure 3-18. Return Statement Syntax

3.4.6 Exit Statement
The exit statement is only allowed in loops. It is used to immediately exit any loop (loop-until, for-loop, while-loop) it is called
from. Sometimes it is convenient to be able to exit from a loop instead of testing at the top. In the case of nested loops (a loop
inside another loop), only the innermost enclosing loop will be exited. See the loop examples in Section 3.4.4 on page 32 for the
exit statement in action.

Figure 3-19. Exit Statement Syntax

RETURN optional-return-value ;

EXIT ;

https://www.ricelake.com

Built-in Types

© Rice Lake Weighing Systems ● All Rights Reserved 35

4.0 Built-in Types
This section provides additional information about the iRite software’s built-in types used in parameters passed to and from.

Code Parameters
BatchingMode

920i
820i
880

882D
1280

Off, Auto, Manual

BatchStatus
920i
820i
880

882D
1280

BatchComplete, BatchStopped, BatchRunning, BatchPaused

BooleanType
1280

BoolTrue, BoolFalse

BusImage
920i
820i
1280

array[32] of integer

BusImageReal
920i
820i
1280

array[32] of real

ChrArray
920i

array[100] of integer

Color_type
920i

White, Black

DataArray
920i
1280

array[300] of real for 920i
array[8000] of real for 1280

Decimal_type
920i
820i
880

1280

DP_8_888888, DP_88_88888, DP_888_8888, DP_8888_888, DP_88888_88, DP_888888_8, DP_8888888,
DP_8888880, DP_8888800, DP_DEFAULT

DisplayImage
920i

array[2402] of integer

DTComponent
920i
820i
880

882D
1280

DateTimeYear, DateTimeMonth, DateTimeDay, DateTimeHour, DateTimeMinute, DateTimeSecond

ExtFloatArray
920i

array[5] of integer

FileAccessMode
920i
820i
1280

FileCreate, FileAppend, FileRead

FileDevice
1280

USB, SDCard, FTP

Table 4-1. Built-in Types

iRite Programmer Manual

36 Visit our website www.RiceLake.com

FileLineTermination
920i
820i
1280

FileCRLF, FileCR, FileLF

GraphType
920i

Line, Bar, XY

HW_array_type
920i
820i
880

882D
1280

array[x] of HW_type
x = 14 (920i / 882D)
x = 2 (820i)
x = 1 (880)
x = 6 (1280)

HW_type
880

1280

NoCard, DualSerial, DualAtoD, SingleAtoD, AnalogOut, DigitalIO, Profibus, AnalogInput, DualAnalogOut, Relay

HW_type
882D

NoCard, DualSerial, DualAtoD, SingleAtoD, AnalogOut, DigitalIO, Pulse, Memory, FieldbusCarrier, DeviceNet, Profibus,
EtherNetIP, ABRIO, BCD, DSP2000, AnalogInput, ControlNet, DualAnalogOut, EtherCAT, DualEtherNetIP, ModbusTCP,
PROFINET, DualPROFINET, FourChannelRelay

HW_type
920i
820i

NoCard, DualSerial, DualAtoD, SingleAtoD, AnalogOut, DigitalIO, Pulse, Memory, reservedCard, DeviceNet, Profibus,
Ethernet, ABRIO, AnalogInput, ControlNet, DualAnalogOut, BCD, DSP2000

IQValType
920i
1280

IQSys, IQPlat, IQRawLC, IQCorrLC, IQZeroLC, IQStatLC, IQ2ScaleWt, IQ2StatusLC

Keys
880

GrossNetKey, UnitsKey, ZeroKey, TareKey, PrintKey, N1KEY, N4KEY, N7KEY, DecpntKey, NavUpKey, NavLeftKey,
EnterKey, N2KEY, N5KEY, N8KEY, N0KEY, NavRightKey, NavDownKey, N3KEY, N6KEY, N9KEY, ClearKey, TimeDateKey,
DisplayTareKey, DisplayAccumKey, MenuKey

Keys
882D

ModeKey, SetpointKey, ZeroKey, PrintKey, MenuKey, N0KEY, N1KEY, N2KEY, N3KEY, N4KEY, N5KEY, N6KEY, N7KEY,
N8KEY, N9KEY, DecpntKey, F1KEY, F2KEY, F3KEY, F4KEY, NavUpKey, NavLeftKey, EnterKey, NavRightKey,
NavDownKey, ClearKey, TimeDateKey

Keys
920i
820i
1280

Soft4Key, Soft5Key, GrossNetKey, UnitsKey, Soft3Key, Soft2Key, Soft1Key, ZeroKey, Undefined3Key, Undefined4Key,
TareKey, PrintKey, N1KEY, N4KEY, N7KEY, DecpntKey, NavUpKey, NavLeftKey, EnterKey, Undefined5Key, N2KEY,
N5KEY, N8KEY, N0KEY, Undefined1Key, Undefined2Key, NavRightKey, NavDownKey, N3KEY, N6KEY, N9KEY, ClearKey,
TimeDateKey, WeighInKey, WeighOutKey, ID_EntryKey, DisplayTareKey, TruckRegsKey, DisplayAccumKey,
ScaleSelectKey, DisplayROCKey, SetpointKey, BatchStartKey, BatchStopKey, BatchPauseKey, BatchResetKey,
DiagnosticsKey, ContactsKey, DoneKey, TestKey, ContrastKey, LLStopKey, LLGoKey, LLOffKey, AuditKey,
KeyedTareKey, ClearAccumKey, AuxPrintKey, USBKey (for 920i), DatabaseKey (for 1280)

Mode
920i
820i
880

1280

GrossMode, NetMode, TareMode

OnOffType
920i
1280

VOff, Von

PrintFormat
880

GrossFmt, NetFmt, SPFmt, AccumFmt

PrintFormat
882D

PrintFormat1, PrintFormat2, PrintFormat3, PrintFormat4, PrintFormatNone

PrintFormat
920i
820i
1280

GrossFmt, NetFmt, AuxFmt, TrWInFmt, TrRegFmt, TrWOutFmt, SPFmt, AccumFmt, AlertFmt, AuxFmt1, AuxFmt2,
AuxFmt3, AuxFmt4, AuxFmt5, AuxFmt6, AuxFmt7, AuxFmt8, AuxFmt9, AuxFmt10, AuxFmt11, AuxFmt12, AuxFmt13,
AuxFmt14, AuxFmt15, AuxFmt16, AuxFmt17, AuxFmt18, AuxFmt19, AuxFmt20

Code Parameters

Table 4-1. Built-in Types (Continued)

https://www.ricelake.com

Built-in Types

© Rice Lake Weighing Systems ● All Rights Reserved 37

SysCode
920i
820i
880

1280

SysOk, SysLFTViolation, SysOutOfRange, SysPermissionDenied, SysInvalidScale, SysBatchRunning,
SysBatchNotRunning, SysNoTare, SysInvalidPort, SysQFull, SysInvalidUnits, SysInvalidSetpoint, SysInvalidRequest,
SysInvalidMode, SysRequestFailed, SysInvalidKey, SysInvalidWidget, SysInvalidState, SysInvalidTimer,
SysNoSuchDatabase, SysNoSuchRecord, SysDatabaseFull, SysNoSuchColumn, SysInvalidCounter, SysDeviceError,
SysInvalidChecksum, SysDatabaseAccessTimeout, SysNoFileOpen, SysFileNotFound, SysInvalidFileFormat,
SysDirectoryNotFound, SysFileReadOnly, SysFileExists, SysNoFileSystemFound, SysFileOpen, SysEndOfFile,
SysNoRoomOnMedia, SysMediaChanged, SysDeviceNotFound, SysNoUSB, SysPortBusy, SysDeviceChange,
SysDeviceAdded, SysBadFileName, SysInvalidFtpConfig, SysInvalidNetworkConfig, SysFtpStartFailed

SysCode
882D

SysOk, SysLFTViolation, SysOutOfRange, SysPermissionDenied, SysInvalidScale, SysBatchRunning,
SysBatchNotRunning, SysNoTare, SysInvalidPort, SysQFull, SysInvalidUnits, SysInvalidSetpoint, SysInvalidRequest,
SysInvalidMode, SysRequestFailed, SysInvalidKey, SysInvalidWidget, SysInvalidState, SysInvalidTimer,
SysNoSuchDatabase, SysNoSuchRecord, SysDatabaseFull, SysNoSuchColumn, SysInvalidCounter, SysDeviceError,
SysInvalidChecksum, SysDatabaseAccessTimeout, SysNoFileOpen, SysFileNotFound, SysInvalidFileFormat,
SysDirectoryNotFound, SysFileReadOnly, SysFileExists, SysNoFileSystemFound, SysFileOpen, SysEndOfFile,
SysNoRoomOnMedia, SysMediaChanged, SysDeviceNotFound, SysNoUSB, SysPortBusy, SysDeviceChange,
SysDeviceAdded, SysBadFileName, SysInvalidTotalizer

TareType
920i
820i
880

1280

NoTare, PushbuttonTare, KeyedTare

TimerMode
920i
820i
880

882D
1280

TimerOneShot, TimerContinuous, TimerDigoutON, TimerDigoutOFF

Units
920i
820i
880

1280

Primary, Secondary, Tertiary

UnitType
920i
820i
880

1280

pound, kilogram, gram, ounce, short_ton, metric_ton, grain, troy_ounce, troy_pound, long_ton, custom, units_off, none

USBDeviceType
920i
820i
1280

USBNoDevice, USBHostPC, USBPrinter1, USBPrinter2, USBKeyboard, USBFileSystem

WeightCollectionArray
920i
1280

array[8000] of real

WgtMsg
920i

array[12] of integer

Code Parameters

Table 4-1. Built-in Types (Continued)

iRite Programmer Manual

38 Visit our website www.RiceLake.com

4.1 Using SysCode Data
SysCode data can be used to take some action based on whether or not a function completed successfully.
Example: the following code checks the SysCode result following a GetTare function. If the function completed successfully, the
retrieved tare weight is written to Port 1:
Procedure GetTareWeight
SysResult : SysCode;
TareWeight : Real;
begin
 SysResult:= GetTare(1, Primary, TareWeight);
 If SysResult = SysOk then
 WriteLn(1, “The current tare weight is “ + realtostring(TareWeight,0,4));
 end if;
end;

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 39

5.0 API Reference
This section lists the application programming interfaces (APIs) used to program the indicator. Functions are grouped according
to the kinds of operations they support.

 NOTE: Check the system.src file to see all of the APIs that are present in the installed version of software.

5.1 Scale Data Acquisition
NOTE: Unless otherwise stated, when an API with a VAR parameter returns a SysCode value other than SysOK, the VAR
parameter is not changed.

5.1.1 Weight Acquisition
Method Description

GetCapacity
1280

Sets C to the configured capacity for scale S and units U
Method Signature:
function GetCapacity (S : Integer; U : Units, VAR C : Real) : SysCode;
Parameters:

[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] C Scale capacity

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidUnits The units value U is not valid
SysOK The function completed successfully

Example:
Capacity : Real;
…
GetCapacity (1, Primary, Capacity);

GetFilteredCount
920i
820i
880

882D
1280

Sets C to the current filtered A/D count for scale S
Method Signature:
function GetFilteredCount (S : Integer; VAR C : Integer) : SysCode;
Parameters:

[in] S Scale number
[out] C Current filtered A/D count

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidRequest The scale specified by S is not an A/D-based scale
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
FilterCount : Integer;
…
GetFilteredCount (1, FilterCount);

Table 5-1. Weight Acquisition Methods

iRite Programmer Manual

40 Visit our website www.RiceLake.com

GetGross
920i
820i
880

1280

Sets W to the current gross weight value of scale S, in the units specified by U; W will contain a weight value even if the scale is
in programmed overload
Method Signature:
function GetGross (S : Integer; U : Units; VAR W : Real) : SysCode;
Parameters:

[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] W Gross weight

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidUnits The units specified by U is not valid
SysInvalidRequest The requested value is not available
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
GrossWeight : Real;
…
GetGross (1, Primary, GrossWeight);
WriteLn (1, "Current gross weight is " + RealToString(GrossWeight,0,1));

GetNet
920i
820i
880

1280

Sets W to the current net weight value of scale S, in the units specified by U; W will contain a weight value even if the scale is in
programmed overload
Method Signature:
function GetNet (S : Integer; U : Units; VAR W : Real) : SysCode;
Parameters:

[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] W Net weight

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidUnits The units specified by U is not valid
SysInvalidRequest The requested value is not available
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
NetWeight : Real;
…
GetNet (Scale1, Secondary, NetWeight);
WriteLn (1, "Current net weight is " + RealToString(NetWeight,0,1));

GetRawCount
920i
820i
880

882D
1280

Sets C to the current raw A/D count for scale S
Method Signature:
function GetRawCount (S : Integer; VAR C : Integer) : SysCode;
Parameters:

[in] S Scale number
[out] C Current raw A/D count

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidRequest The scale specified by S is not an A/D-based scale
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
RawCount : Integer;
…
GetRawCount (1, RawCount);

Method Description

Table 5-1. Weight Acquisition Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 41

5.1.2 Weight Data Recording
There are two methods to record weight readings into an array at a high rate of speed – DataRecording and WeightCollection.

DataRecording
DataRecording allows raw weights to be stored to a user program-specified array on each iteration of the scale processor.
Recording begins when the Start Setpoint (start_sp is satisfied and ends when the Stop Setpoint (stop_sp) is satisfied.

GetMV
920i
880

1280
820

882D

Returns the mV value of scale S into the variable passed on as MV
Method Signature:
function GetMV (S : Integer; VAR MV : Real) : SysCode;
Parameters:

[in] S Scale number
[out] R Millivolts

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidRequest The requested value is not available
SysOK The function completed successfully

Example:
Millivolt : Real;
…

GetMV (1, Millivolt);
WriteIn (1, “Current Millivolt reading is” + realtostring(Millivolt,0,2));

GetTare
920i
820i
880

1280

Sets W to the tare weight of scale S in weight units specified by U
Method Signature:
function GetTare (S : Integer; U : Units; VAR W : Real) : SysCode;
Parameters:

[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] W Tare weight

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidUnits The units specified by U is not valid
SysInvalidRequest The requested value is not available
SysNoTare The specified scale has no tare; W is set to 0.0
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
TareWeight : Real;
…
GetTare (1, Tertiary, TareWeight);
WriteLn (1, "Current tare weight is " + RealToString(TareWeight,0,1));

Methods Description
CloseData
Recording

920i
1280
820

Turns off data recording started with InitDataRecording; This procedure removes all connections to the data recording function;
To restart data recording, use the InitDataRecording function
Method Signature:
Procedure CloseDataRecording (scale_no : Integer);
Parameters:

[in] scale_no Scale Number

Table 5-2. Data Recording Methods

Method Description

Table 5-1. Weight Acquisition Methods (Continued)

iRite Programmer Manual

42 Visit our website www.RiceLake.com

WeightCollection
WeightCollection allows the recording of weights, at the A/D update rate, to a user-specified array of type
WeightCollectionArray.

GetData
RecordSize

920i
1280
820

Returns the number of data points recorded in the user-specified data array
Method Signature:
Function GetDataRecordSize(scale_no : Integer) : Integer;
Parameters:

[in] scale_no Scale Number
Value Returned:

[out] number The number of data points recorded
InitData
Recording

920i
1280
820

Specifies the data array used for the recording, scale number, and the start and stop setpoint numbers
NOTE: If the setpoint conditions return to the start conditions (start_up satisfied, stop_sp not satisfied_, recording will
continue at the array location where it left off. Thus, a continuous batch will need to call CloseDataRecording to stop
recording, then call InitDataRecording to restart data recording at the beginning of the array.
Method Signature:
Function InitDataRecording (data : DataArray; scale_no : Integer; start_sp : Integer; stop_sp : Integer) : SysCode;
Parameters:

[in] data Data array name
[in] scale_no Scale Number
[in] start_sp Start setpoint number
[in] stop_sp Stop setpoint number

SysCode values returned:
SysRequestFailed The function did not complete
SysOk The function completed successfully

SetDataRecord
Precision

920i
1280

Sets the data recording to high precision
Method Signature:
Function SetDataRecordPrecision (scale_no : Integer; precision : OnOffType) : SysCode;
Parameters:

[in] scale_no Scale Number
[in] precision OnOffType Von or VOff

SysCode values returned:
SysRequestFailed The function did not complete
SysOk The function completed successfully

Methods Description
StartWeight
Collection

920i
1280

Starts the collection of weight data, from the specified scale, to the user specified array
Method Signature:
Function StartWeightCollection (scale_no : Integer; data : WeightCollectionArray) : SysCode;
Parameters:

[in] scale_no Scale Number
[in] data Data array name

SysCode values returned:
SysRequestFailed The function did not complete
SysOk The function completed successfully

Table 5-3. Weight Collection Methods

Methods Description

Table 5-2. Data Recording Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 43

5.1.3 Tare Manipulation

StopWeight
Collection

920i
1280

Stops the collection of weight data that was started with StartWeightCollection, and returns the number of data points recorded in
the user-specified data array
Method Signature:
Function StopWeightCollection(scale_no : Integer) : Integer;
Parameters:

[in] scale_no Scale Number
Value Returned:

[out] number The number of data points recorded

Methods Description
AcquireTare

920i
820i
880

1280

Acquires a pushbutton tare from scale S
Method Signature:
function AcquireTare (S : Integer) : SysCode;
Parameters:

[in] S Scale number
SysCode values returned:

SysInvalidRequest The specified scale is Legal for Trade Serial Scale. No tare is acquired
SysInvalidScale The scale specified by S does not exist or is a program scale
SysLFTViolation The tare operation would violate configured legal-for-trade restrictions for

 the specified scale; no tare is acquired
SysOutOfRange The tare operation would acquire a tare that may cause a display overload.

 No tare is acquired.
SysPermissionDenied The tare operation would violate configured tare acquisition restrictions for

 the specified scale; no tare is acquired
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
AcquireTare (1);

ClearTare
920i
820i
880

1280

Removes the tare associated with scale S and sets the tare type associated with the scale to NoTare
Method Signature:
function ClearTare (S : Integer) : SysCode;
Parameters:

[in] S Scale number
SysCode values returned:

SysInvalidRequest The specified scale is Legal for Trade Serial Scale; no tare is acquired
SysInvalidScale The scale specified by S does not exist or is a program scale
SysNoTare The scale specified by S has no tare
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
ClearTare (1);

Table 5-4. Tare Manipulation Methods

Methods Description

Table 5-3. Weight Collection Methods (Continued)

iRite Programmer Manual

44 Visit our website www.RiceLake.com

GetTareType
920i
820i
880

1280

Sets T to indicate type of tare currently on scale S
Method Signature:
function GetTareType (S : Integer; VAR T : TareType) : SysCode;
Parameters:

[in] S Scale number
[out] T Tare type

TareType values returned:
NoTare There is no tare value associated with the specified scale
PushbuttonTare The current tare was acquired by pushbutton
KeyedTare The current tare was acquired by key entry or by setting the tare

SysCode values returned:
SysDeviceError The scale is reporting an error condition; T is still set to the tare type
SysInvalidScale The scale specified by S does not exist or is a program scale; T is unchanged
SysOK The function completed successfully

Example:
TT : TareType;
…
GetTareType (1, TT);
if TT=KeyedTare then …

SetTare
920i
820i
880

1280

Sets the tare weight for the specified channel
Method Signature:
function SetTare (S : Integer; U : Units; W : Real) : SysCode;
Parameters:

[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[in] W Tare weight

SysCode values returned:
SysInvalidRequest The specified scale is Legal for Trade Serial Scale; no tare is acquired
SysPermissionDenied The tare operation would violate configured tare acquisition restrictions for

 the specified scale; no tare is acquired
SysInvalidScale The scale specified by S does not exist or is a program scale
SysInvalidUnits The units specified by U is not valid
SysLFTViolation The tare operation would violate configured legal-for-trade restrictions for the

 specified scale; no tare is acquired
SysOutOfRange The tare operation would acquire a tare that may cause a display overload;

 no tare is acquired
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
DesiredTare : Real;
…
DesiredTare := 1234.5;
SetTare (1, Primary, DesiredTare);

Methods Description

Table 5-4. Tare Manipulation Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 45

5.1.4 Rate of Change

KeyedTareIgnoreReg()
920i

Sets the tare weight for the specified channel; Disregards TAREFN configuration. Allows a KeyedTare whether TAREFN configu-
ration is set to KEYED, BOTH or PBTARE
Method Signature:
function SetTare (S : Integer; U : Units; W : Real) : SysCode;
Parameters:

[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[in] W Tare weight

SysCode values returned:
SysInvalidRequest The specified scale is Legal for Trade Serial Scale; no tare is acquired
SysPermissionDenied The tare operation would violate configured tare acquisition restrictions for

 the specified scale; no tare is acquired
SysInvalidScale The scale specified by S does not exist or is a program scale
SysInvalidUnits The units specified by U is not valid
SysLFTViolation The tare operation would violate configured legal-for-trade restrictions for the

 specified scale; no tare is acquired
SysOutOfRange The tare operation would acquire a tare that may cause a display overload;

 no tare is acquired
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
DesiredTare : Real;
…
DesiredTare := 1234.5;
SetTare (1, Primary, DesiredTare);

Methods Description
GetROC

920i
820i
1280

Sets R to the current rate-of-change value of scale S
Method Signature:
function GetROC (S : Integer; VAR R : Real) : SysCode;
Parameters:

[in] S Scale number
[out] R Rate of change value

SysCode values returned:
SysInvalidRequest The scale specified by S is not an A/D scale, an industrial serial scale, or Rate of Change is not

supported
SysInvalidScale The scale specified by S does not exist
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
ROC : Real;
…
GetROC (1, ROC);
WriteLn (1, "Current ROC is " + RealToString(ROC,0,1));

Table 5-5. Rate of Change Command

Methods Description

Table 5-4. Tare Manipulation Methods (Continued)

iRite Programmer Manual

46 Visit our website www.RiceLake.com

5.1.5 Accumulator Operations
Methods Description

ClearAccum
920i
820i
880

1280

Sets the value of the accumulator for scale S to zero
Method Signature:
function ClearAccum (S : Integer) : SysCode;
Parameters:

[in] S Scale number
SysCode values returned:

SysInvalidScale The scale specified by S does not exist
SysPermissionDenied The accumulator is not enabled for the specified scale
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
ClearAccum (1);

GetAccum
920i
820i
880

1280

Sets W to the value of the accumulator associated with scale S, in the units specified by U
Method Signature:
function GetAccum (S : Integer; U : Units; VAR W : Real) : SysCode;
Parameters:

[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] W Accumulated weight

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidUnits The units specified by U is not valid
SysDeviceError The scale is reporting an error condition; D is still updated with the date of

 the most recent accumulation
SysPermissionDenied The accumulator is not enabled for the specified scale
SysOK The function completed successfully

Example:
AccumValue : Real;
…
GetAccum (1, Primary, AccumValue);

GetAccumCount
920i
820i
880

1280

Sets N to the number of accumulations performed for scale S since its accumulator was last cleared
Method Signature:
function GetAccumCount (S : Integer; VAR N : Integer) : SysCode;
Parameters:

[in] S Scale number
[out] N Accumulator count

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysPermissionDenied The accumulator is not enabled for the specified scale
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
NumAccums : Integer;
…
GetAccumCount (1, NumAccums);

Table 5-6. Accumulator Operation Methods

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 47

GetAccumDate
920i
820i
880

1280

Sets D to the date of the most recent accumulation performed by scale S
Method Signature:
function GetAccumDate (S : Integer; VAR D : String) : SysCode;
Parameters:

[in] S Scale number
[out] D Accumulator date

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysPermissionDenied The accumulator is not enabled for the specified scale
SysDeviceError The scale is reporting an error condition; D is still updated with the date of

 the most recent accumulation
SysOK The function completed successfully

Example:
AccumDate : String;
…
GetAccumDate (1, AccumDate);

GetAccumTime
920i
820i
880

1280

Sets T to the time of the most recent accumulation performed by scale S
Method Signature:
function GetAccumTime (S : Integer; VAR T : String) : SysCode;
Parameters:

[in] S Scale number
[out] T Accumulator time

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysPermissionDenied The accumulator is not enabled for the specified scale
SysDeviceError The scale is reporting an error condition. T is still updated with the time of

 the most recent accumulation
SysOK The function completed successfully

Example:
AccumTime : String;
…
GetAccumTime (1, AccumTime);

GetAvgAccum
920i
820i
880

1280

Sets W to the average accumulator value associated with scale S, in the units specified by U, since the accumulator was last cleared
Method Signature:
function GetAvgAccum (S : Integer; U : Units; VAR W : Real) : SysCode;
Parameters:

[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] W Average accumulator weight

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidUnits The units specified by U is not valid
SysDeviceError The scale is reporting an error condition. W is still updated with the average

 accumulator value
SysPermissionDenied The accumulator is not enabled for the specified scale
SysOK The function completed successfully

Example:
AvgAccum : Real;
…
GetAvgAccum (1, AvgAccum);

Methods Description

Table 5-6. Accumulator Operation Methods (Continued)

iRite Programmer Manual

48 Visit our website www.RiceLake.com

5.1.6 Scale Operation

SetAccum
920i
820i
880

1280

Sets the value of the accumulator associated with scale S to weight W, in units specified by U
Method Signature:
function SetAccum (S : Integer; U : Units; W : Real) : SysCode;
Parameters:

[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[in] W Accumulator value

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidUnits The units specified by U is not valid
SysDeviceError The scale is reporting an error condition
SysPermissionDenied The accumulator is not enabled for the specified scale

NOTE: If the units specified by U are Secondary or Tertiary, the scale has to be either an A/D scale or a total scale.
If not A/D scale or a total scale then SysPermissionDenied will be returned.
NOTE: If the units specified by U are Primary, the scale can be any type.

SysOK The function completed successfully
Example:
AccumValue : Real;
…
AccumValue := 110.5
SetAccum (1, Primary, AccumValue);

Methods Description
CurrentScale

920i
820i
880

882D
1280

Returns the number of the currently displayed scale
Method Signature:
function CurrentScale : Integer;
Example:
ScaleNumber : Integer;
…
ScaleNumber := CurrentScale;

GetMode
920i
820i
880

1280

Sets M to the value representing the current display mode for scale S
Method Signature:
function GetMode (S : Integer; VAR M : Mode) : SysCode;
Parameters:

[in] S Scale number
[out] M Current display mode

Mode values returned:
GrossMode Scale S is currently in gross mode
NetMode Scale S is currently in net mode

SysCode values returned:
SysInvalidScale The scale specified by S does not exist or is a program scale
SysDeviceError The scale is reporting an error condition; M is still updated with the current display mode
SysOK The function completed successfully

Example:
CurrentMode : Mode;
…
GetMode (1, CurrentMode);

Table 5-7. Scale Operation Methods

Methods Description

Table 5-6. Accumulator Operation Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 49

GetUnits
920i
820i
880

1280

Sets U to the value representing the current display units for scale S
Method Signature:
function GetUnits (S : Integer; VAR U : Units) : SysCode;
Parameters:

[in] S Scale number
[out] U Current display units

Units values returned:
Primary Primary units are currently displayed on scale S
Secondary Secondary units are currently displayed on scale S
Tertiary Tertiary units are currently displayed on scale S

SysCode values returned:
SysInvalidScale The scale specified by S does not exist or is a program scale
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
CurrentUnits : Units;
…
GetUnits (1, CurrentUnits);

GetUnitsString
920i
820i
880

1280

Sets V to the text string representing the current display units for scale S
Method Signature:
function GetUnitsString (S : Integer; U : Units; VAR V : String) : SysCode;
Parameters:

[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] V Current display units string

Units values sent:
Primary Get the Primary units string for scale S
Secondary Get the Secondary units string for scale S
Tertiary Get the Tertiary units string for scale S

SysCode values returned:
SysInvalidScale The scale specified by S does not exist or is a program scale
SysInvalidUnits The units value specified by U does not exist
SysOK The function completed successfully

Example:
CurrentUnitsString : String;
…
GetUnitsString (1, Primary, CurrentUnitsString);

InCOZ
920i
820i
880

1280

Sets V to a non-zero value if scale S is within 0.25 grads of gross zero; If the condition is not met, V is set to zero
Method Signature:
function InCOZ (S : Integer; VAR V : Integer) : SysCode;
Parameters:

[in] S Scale number
[in] V Center-of-zero value

SysCode values returned:
SysInvalidScale The scale specified by S does not exist or is a program scale
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
ScaleAtCOZ : Integer;
…
InCOZ (1, ScaleAtCOZ);

Methods Description

Table 5-7. Scale Operation Methods (Continued)

iRite Programmer Manual

50 Visit our website www.RiceLake.com

InMotion
920i
820i
880

1280

Sets V to a non-zero value if scale S is in motion; otherwise, V is set to zero
Method Signature:
function InMotion (S : Integer; VAR V : Integer) : SysCode;
Parameters:

[in] S Scale number
[out] V In-motion value

SysCode values returned:
SysInvalidScale The scale specified by S does not exist or is a program scale
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
ScaleInMotion : Integer;
…
InMotion (1, ScaleInMotion);

InRange
920i
820i
880

1280

Sets V to zero value if scale S is in an overload or underload condition; otherwise, V is set to a non-zero value
Method Signature:
function InRange (S : Integer; VAR V : Integer) : SysCode;
Parameters:

[in] S Scale number
[out] V In-range value

SysCode values returned:
SysInvalidScale The scale specified by S does not exist or is a program scale
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
ScaleInRange : Integer;
…
InRange (1, ScaleInRange);

SelectScale
920i
820i
1280
880

882D

Sets scale S as the current scale
Method Signature:
function SelectScale (S : Integer) : SysCode;
Parameters:

[in] S Scale number
SysCode values returned:

SysInvalidScale The scale specified by S does not exist; the current scale is not changed
SysOK The function completed successfully

Example:
SelectScale (1);

Methods Description

Table 5-7. Scale Operation Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 51

SetMode
920i
820i
880

1280

Sets the current display mode on scale S to M
Method Signature:
function SetMode (S : Integer; M : Mode) : SysCode;
Parameters:

[in] S Scale number
[in] M Scale mode

Mode values sent:
GrossMode Scale S is set to gross mode
NetMode Scale S is set to net mode

SysCode values returned:
SysInvalidScale The scale specified by S does not exist or is a program scale
SysInvalidMode The mode value M is not valid
SysDeviceError The scale is reporting an error condition; the mode is not changed
SysOK The function completed successfully

Example:
SetMode (1, GrossMode or NetMode);

SetUnits
920i
820i
880

1280

Sets the current display units on scale S to U
Method Signature:
function SetUnits (S : Integer; U : Units) : SysCode;
Parameters:

[in] S Scale number
[in] U Scale units

Units values sent:
Primary Primary units will be displayed on scale S
Secondary Secondary units will be displayed on scale S
Tertiary Tertiary units will be displayed on scale S

SysCode values returned:
SysInvalidRequest The scale specified by S is a legal for trade or industrial serial scale
SysInvalidScale The scale specified by S does not exist or is a program scale
SysInvalidUnits The units value U is not valid
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
SetUnits (1, Secondary);

ZeroScale
920i
820i
880

1280

Performs a gross zero scale operation for S
Method Signature:
function ZeroScale (S : Integer) : SysCode;
Parameters:

[in] S Scale number
SysCode values returned:

SysInvalidRequest The scale specified by S is a legal for trade serial scale
SysInvalidScale The scale specified by S does not exist or is a program scale
SysLFTViolation The zero operation would violate configured legal-for-trade restrictions for the specified scale;

No zero is performed
SysOutOfRange The zero operation would exceed the configured zeroing limit; No zero is acquired
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
ZeroScale (1);

Methods Description

Table 5-7. Scale Operation Methods (Continued)

iRite Programmer Manual

52 Visit our website www.RiceLake.com

GetCountBy
920i
820i
880

1280

Sets C to the real count-by value on scale S, in units U
Method Signature:
function GetCountBy (S : Integer; U : Units; VAR C : Real) : SysCode;
Parameters:

[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] C Count-by value

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidUnits The units specified by U is not recognized
SysInvalidRequest The scale specified by S does not support this operation (serial scale)
SysDeviceError The scale is reporting an error condition; C is still updated with the count-by value
SysOK The function completed successfully

Example:
CountBy : Real;
...
GetCountBy (1, Primary, CountBy);

GetGrads
920i
820i
880

1280

Sets G to the configured grad value of scale S
Method Signature:
function GetGrads (S : Integer; VAR G : Integer) : SysCode;
Parameters:

[in] S Scale number
[out] G Grads value

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidRequest The scale specified by S does not support this operation (serial scale)
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
Grads : Integer;
...
GetGrads (1, Grads);

SetDFStages
1280

Sets the digital filtering stage
Method Signature:
function SetDFStages (S : Integer; S1 : Integer; S2 : Integer; S3 : Integer) : SysCode;
Parameters:

[in] S Scale number
[in] S1 Stage 1
[in] S2 Stage 2
[in] S3 Stage 3

SysCode values returned:
SysInvalidRequest Invalid type
SysOutOfRange Values have not been assigned
SysOK The function completed successfully

Example:
SetDFStages (1, 4, 4, 4);

SetDFThresholds
1280

Sets the digital filtering threshold
Method Signature:
function SetDFThresholds (S : Integer; Sensitivity : Integer; Threshold : Integer) : SysCode;
Parameters:

[in] S Scale number
[in] Sensitivity Sensitivity
[in] Threshold Threshold

SysCode values returned:
SysInvalidRequest Invalid type
SysOutOfRange Values have not been assigned
SysOK The function completed successfully

Methods Description

Table 5-7. Scale Operation Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 53

5.1.7 Calibration Data
Methods Description

GetLCCD
920i
820i
880

1280

Sets V to the calibrated deadload count for scale S
Method Signature:
function GetLCCD (S : Integer; VAR V : Integer) : SysCode;
Parameters:

[in] S Scale number
[out] V Deadload count

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidRequest The scale specified by S is not an A/D-based scale
SysOK The function completed successfully

GetLCCW
920i
820i
880

1280

Sets V to the calibrated span count for scale S
Method Signature:
function GetLCCW (S : Integer; VAR V : Integer) : SysCode;
Parameters:

[in] S Scale number
[out] V Calibrated span count

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidRequest The scale specified by S is not an A/D-based scale
SysOK The function completed successfully

GetLCCC
1280

Sets V to the calibrated load cell count at capacity for scale S
Method Signature
function GetLCCC (S : Integer; VAR V : Integer) : SysCode;
Parameters:

[in] S Scale number
[out] V Load cell count at capacity

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidRequest The scale specified by S is not an A/D-based scale
SysOK The function completed successfully

GetWVal
920i
820i
880

1280

Sets V to the configured WVAL (test weight value) for scale S
Method Signature:
function GetWVal (S : Integer; VAR V : Real) : SysCode;
Parameters:

[in] S Scale number
[out] V Test weight value

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidRequest The scale specified by S is not an A/D-based scale
SysOK The function completed successfully

GetZeroCount
920i
820i
880

1280

Sets V to the amount of counts from calibrated deadload for scale S
Method Signature:
function GetZeroCount (S : Integer; VAR V : Integer) : SysCode;
Parameters:

[in] S Scale number
[out] V Deadload count

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidRequest The scale specified by S is not an A/D-based scale
SysOK The function completed successfully

Table 5-8. Calibration Data Methods

iRite Programmer Manual

54 Visit our website www.RiceLake.com

5.2 System Support

GetLiveZeroCounts
1280

Sets V to the counts value of the live zero weight for scale S
Method Signature:
function GetLiveZeroCounts (S : Integer; VAR V : Integer) : SysCode;
Parameters:

[in] S Scale number
[out] V Live zero count

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidRequest The scale specified by S is not an A/D-based scale
SysOK The function completed successfully

GetPBZeroCounts
1280

Sets V to the counts value of the pushbutton zero for scale S
Method Signature:
function GetPBZeroCounts (S : Integer; VAR V : Integer) : SysCode;
Parameters:

[in] S Scale number
[out] V Live zero count

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidRequest The scale specified by S is not an A/D-based scale
SysOK The function completed successfully

Methods Description
Date$

920i
820i
880

882D
1280

Returns a string representing the system date contained in DT
Method Signature:
function Date$ (DT : DateTime) : String;

DisableHandler
920i
820i
880

882D
1280

Disables the specified event handler. See Section 6.1 on page 113 for a list of handlers
Method Signature:
procedure DisableHandler (handler);
SysCode values returned:

SysInvalidRequest The specified handler does not exist
SysOK The function completed successfully

DisplayIs
Suspended

920i
820i
880

882D
1280

Returns a true (non-zero) value if the display is suspended (using the SuspendDisplay procedure), or a false (zero) value if the
display is not suspended
Method Signature:
function DisplayIsSuspended : Integer;

EnableHandler
920i
820i
880

882D
1280

Enables the specified event handler; see Section 6.1 on page 113 for a list of handlers
Method Signature:
procedure EnableHandler (handler);
SysCode values returned:

SysInvalidRequest The specified handler does not exist
SysOK The function completed successfully

Table 5-9. System Support Methods

Methods Description

Table 5-8. Calibration Data Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 55

EventChar
920i
820i
880

882D
1280

Returns a one-character string representing the character received on a communications port that caused the
PortxCharReceived event; If EventChar is called outside the scope of a PortxCharReceived event, EventChar returns a string
of length zero; See Section 6.1 on page 113 for information about the PortxCharReceived event handler
Method Signature:
function EventChar : String;
Example:
handler Port4CharReceived;
 strOneChar : string;
begin
 strOneChar := EventChar;
end;

EventConnection
1280

Returns the name of the communications connection that caused the ConnectionCharReceived or Cmdx handler events;
If EventConnection is called outside the scope of either of these events, a string of length zero is returned
Method Signature:
function EventConnection : string;

EventKey
920i
820i
880

882D
1280

Returns an enumeration of type keys with the value corresponding to the key press that generated the event;
See Section 4.0 on page 35 for a definition of the Keys data type
Method Signature:
function EventKey : Keys;
Example:
handler KeyPressed;
begin
 if EventKey = ClearKey then
 …
 end if;
end;

EventPort
920i
820i
880

882D
1280

Returns the communications port number that received an F#x serial command; This function extracts data from the
CmdxHandler event for the F#x command, if enabled (the CmdxHandler, if enabled, runs whenever a F#x command is received
on any serial port); If the CmdxHandler is not enabled, this function returns 0 as the port number
Method Signature:
function EventPort : Integer;

EventString
920i
820i
880

882D
1280

Returns the string sent with an F#x serial command; this function extracts data from the CmdxHandler event for the F#x
command, if enabled; The CmdxHandler, if enabled, runs whenever a F#x command is received on any serial port;
If the CmdxHandler is not enabled, or if no string is defined for the F#x command, this function returns a string of length zero
Method Signature:
function EventString : String;

EventHid
1280

–

EventWidget
1280

When used in the WidgetClicked handler, determines the activated display widget. The value returned is the widget number
(1-999).
Method Signature:
function EventWidget : Integer;

GetConsecNum
920i
820i
880

882D
1280

Returns the value of the consecutive number counter
Method Signature:
function GetConsecNum : Integer;

Methods Description

Table 5-9. System Support Methods (Continued)

iRite Programmer Manual

56 Visit our website www.RiceLake.com

GetDate
920i
820i
880

882D
1280

Extracts date information from DT and places the data in variables Year, Month, and Day
Method Signature:
procedure GetDate (DT : DateTime; VAR Year : Integer; VAR Month : Integer; VAR Day : Integer);
Parameters:

[in] DT DateTime variable name
[out] Year Year
[out] Month Month
[out] Day Day

GetIQData
920i

Returns data from a given iQUBE; the types that IQValType may be are: IQSys, IQPlat, IQRawLC, IQCorrLC, IQZeroLC,
IQStatLC, IQScaleWt, and IQ2StatusLC; IQSys returns the system weight value; IQPlat returns the millivolt value for the indexed
platform; IQRawLC returns the indexed raw load cell millivolt value; IQCorrLC returns the indexed corrected load cell millivolt
value; IQZeroLC returns the indexed load cell deadload millivolt value; IQStatLC returns the indexed load cell status; IQ2ScaleWt
returns the indexed scale weight value; IQSys and IQPlat are revised to also return the scale data; IQ2StatusLC returns the
indexed load cell status; The old IQStatLC is not supported and will return SysInvalidRequest
NOTE: When using with Firmware 4.xx/iQube2: The IQSys and IQPlat data types will return SysOk as long as the
command is correctly formatted (scale exists). To tell whether the iQUBE2 is in an error condition, look at the value (not
the syscode) of the IQ2StatusLC data type.
Method Signature:
function GetIqubeData(port_no : integer; dataType : IQValType; index : integer; VAR data : real) : SysCode;

SysCode values returned:
SysOutOfRange The array index is less than or equal to 0
SysInvalidRequest The requested port is not configured as an iQUBE; The value cannot be returned due to the

device configuration, trying to address load cell 17; Certain requests while the diagnostic
screen is open or an invalid data type is requested

SysDeviceError The scale is reporting an internal error
SysOK The function completed successfully

GetIQData
1280

Returns data from a given iQUBE; The types that IQValType may be are: IQSys, IQPlat, IQRawLC, IQCorrLC, IQZeroLC,
IQStatLC, IQScaleWt, and IQ2StatusLC; IQSys returns the system weight value; IQPlat returns the millivolt value for the indexed
platform; IQRawLC returns the indexed raw load cell millivolt value; IQCorrLC returns the indexed corrected load cell millivolt
value; IQZeroLC returns the indexed load cell deadload millivolt value; IQStatLC returns the indexed load cell status; IQ2ScaleWt
returns the indexed scale weight value; IQSys and IQPlat are revised to also return the scale data; IQ2StatusLC returns the
indexed load cell status; The old IQStatLC is not supported and will return SysInvalidRequest
NOTE: When using with Firmware 4.xx/iQube2: The IQSys and IQPlat data types will return SysOk as long as the
command is correctly formatted (i.e., scale exists). To tell whether the iQUBE2 is in an error condition, look at the value
(not the syscode) of the IQ2StatusLC data type.
Method Signature:
function GetIQData(Connection Name : string; dataType : IQValType; index : integer; VAR data : real) : SysCode;

SysCode values returned:
SysOutOfRange The array index is less than or equal to 0
SysInvalidRequest The requested port is not configured as an iQUBE; The value cannot be returned due to the

device configuration, trying to address load cell 17; Certain requests while the diagnostic
screen is open or an invalid data type is requested

SysDeviceError The scale is reporting an internal error
SysOK The function completed successfully

Methods Description

Table 5-9. System Support Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 57

GetKey
920i
820i
880

882D
1280

Waits for a key press from the indicator front panel before continuing the program; The optional time-out is specified in
0.01-second intervals (1/100 seconds); If the wait time is set to zero, the procedure will wait indefinitely
Method Signature:
function GetKey (timeout : Integer);
Parameters:

[in] timeout Time-out value
Example:
this_key : Keys;
…
DisplayStatus ("Press [Enter] for Yes");

this_key: = GetKey(0);
if this_key = EnterKey then
 DisplayStatus ("Yes");
else
 DisplayStatus ("No");
end if;

GetMACAddress
1280

Returns a string value of the read-only onboard MAC address
Method Signature:
function GetMACAddress : String;

GetSoftware
Version

920i
820i
880

882D
1280

Returns the current software version
Method Signature:
function GetSoftwareVersion : String;

GetTime
920i
820i
880

882D
1280

Extracts time information from DT and places the data in variables Hour, Minute, and Second
Method Signature:
procedure GetTime (DT : DateTime; VAR Hour : Integer; VAR Minute : Integer; VAR Second : Integer);
Parameters:

[in] DT DateTime variable name
[out] Hour Hour
[out] Minute Minute
[out] Second Second

GetUID
920i
820i
880

882D
1280

Returns the current unit identifier
Method Signature:
function GetUID : String;

Hardware
920i
820i
880

882D
1280

Returns an array of HW_type; The elements of the array correspond to option card slots in the indicator; This API is useful for
determining the presence of option cards that are required or that could activate different options in the user program
Method Signature:
procedure Hardware(var hw : HW_array_type);
SysCode values returned:
None

Methods Description

Table 5-9. System Support Methods (Continued)

iRite Programmer Manual

58 Visit our website www.RiceLake.com

KeyPress
920i
820i
880

882D
1280

Provides intrinsic functionality for a key; The following keys will have intrinsic function, in addition to the front panel keys already
in the Keys built-in type: TimeDateKey, WeighInKey, WeighOutKey, ID_EntryKey, DisplayTareKey, TruckRegsKey,
DisplayAccumKey, ScaleSelectKey, DisplayROCKey, SetpointKey, BatchStartKey, BatchStopKey, BatchPauseKey,
BatchResetKey, DiagnosticsKey, ContactsKey, DoneKey, TestKey,ContrastKey, LLStopKey, LLGoKey, LLOffKey, AuditKey,
KeyedTareKey, ClearAccumKey, AuxPrintKey, USBKey (in 920i only), DatabaseKey (in 1280 only); The ContactsKey will actually
function like the Dignostics softkey, while the DiagnosticsKey will go straight to the Diagnostics screen; The DoneKey will only
return from the contacts screen; The TestKey will allow the user program to test for strict weigh mode by not doing anything at all;
This API will only function in actual weigh mode
Method Signature:
function KeyPress (K : Keys) : SysCode;
SysCode values returned:

SysInvalidMode The indicator is not actually in weigh mode; The TestKey will return SysInvalidMode for all
sub-modes of weigh mode (the contact screen) as well as any other mode (time & date entry,
or open prompt)

SysInvalidKey Any Invalid key; softkeys and Undefined Keys are considered invalid
SysInvalidRequest Processing the key returns invalid or error
SysOK The function completed successfully

LockKey
920i
820i
880

882D
1280

Disables the specified front panel key; possible values are: ZeroKey, GrossNetKey, TareKey, UnitsKey, PrintKey, Soft1Key,
Soft2Key, Soft3Key, Soft4Key, Soft5Key, NavUpKey, NavRightKey, NavDownKey, NavLeftKey, EnterKey, N1Key, N2Key, N3Key,
N4Key, N5Key, N6Key, N7Key, N8Key, N9Key, N0Key, DecpntKey, ClearKey
Method Signature:
function LockKey (K : Keys) : SysCode;
Parameters:

[in] K Key name
SysCode values returned:

SysInvalidKey The key specified is not valid
SysOK The function completed successfully

LockKeypad
920i
820i
880

882D
1280

Disables operation of the entire front panel keypad
Method Signature:
function LockKeypad : SysCode;
SysCode values returned:

SysPermissionDenied
SysOK The function completed successfully

ProgramDelay
920i
820i
880

882D
1280

Pauses the user program for the specified time; Delay time is entered in 0.01-second intervals (1/100 seconds, 100 = 1 second)
Method Signature:
procedure ProgramDelay (D : Integer);
Parameters:

[in] D Delay time
Example:
ProgramDelay(200); –Pauses the program for 2 seconds

RestartNetworks
1280

Resets the network if connection is lost
Method Signature:
function RestartNetworks : SysCode;
SysCode values returned:

SysOK The function completed successfully
SysDeviceError Function failed to reset

ResumeDisplay
920i
820i
1280

Resumes a suspended display
Method Signature:
procedure ResumeDisplay;

Methods Description

Table 5-9. System Support Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 59

SetConsecNum
920i
820i
880

882D
1280

Sets V to the value of the consecutive number counter
Method Signature:
function SetConsecNum (V : Integer) : SysCode;
Parameters:

[in] V Consecutive number
SysCode values returned:

SysOutOfRange The value specified is not in the allowed range; The consecutive number is not changed
SysOK The function completed successfully

SetDate
920i
820i
880

882D
1280

Sets the date in DT to the values specified by Year, Month, and Day
Method Signature:
function SetDate (VAR DT : DateTime; VAR Year : Integer; VAR Month : Integer; VAR Day : Integer) : SysCode;
Parameters:

[out] DT DateTime variable name
[in] Year Year
[in] Month Month
[in] Day Day

SysCode values returned:
SysInvalidRequest Year, month, or day entry not valid
SysOK The function completed successfully

SetSoftkeyText
920i
820i
1280

Sets the text of softkey K (representing F1–F10) to the text specified by S
Method Signature:
function SetSoftkeyText (K : Integer; S : String) : SysCode;
Parameters:

[in] K Softkey number
[in] S Softkey text

SysCode values returned:
SysInvalidRequest The value specified for K is less than 1 or greater than 10, or does not represent a configured

softkey
SysOK The function completed successfully

SetSystemTime
920i
820i
880

882D
1280

Sets the realtime clock to the value specified in DT
Method Signature:
function SetSystemTime (DT : DateTime);
Parameters:

[in] DT System DateTime
SetTime

920i
820i
880

882D
1280

Sets the time in DT to the values specified by Hour, Minute, and Second
Method Signature:
function SetTime (VAR DT : DateTime; Hour : Integer; Minute : Integer; Second : Integer) : SysCode;
Parameters:

[out] DT DateTime variable name
[in] Hour Hour
[in] Minute Minute
[in] Second Second

SysCode values returned:
SysInvalidRequest Hour or minute entry not valid
SysOK The function completed successfully

SetUID
920i
820i
880

882D
1280

Sets the unit identifier
NOTE: Changes made to the UID using the SetUID function are lost when the indicator power is cycled. When power is
restored, the UID is reset to the value at the last SAVE/EXIT from configuration mode.
Method Signature:
function SetUID (newid : String);
Parameters:

[in] newid Unit identifier

Methods Description

Table 5-9. System Support Methods (Continued)

iRite Programmer Manual

60 Visit our website www.RiceLake.com

StartFTPServer
1280

Allows access for external devices to the FTP server; Password must be manually configured and ftp server must be enabled in
configuration
Method Signature
function StartFTPServer : SysCode;
SysCode Values Returned

SysOK Started Successfully
SysInvalidFtpConfig FTP Server is not enabled in Features -> FTP -> FTP Enabled
SysInvalidNetworkConfig Ethernet is not enabled in Communications -> Ethernet -> Enabled
SysFtpStartFailed ftp server did not start (not password related)

STick
920i
820i
880

882D
1280

Returns the number of system ticks, in 1/1200th of a second intervals, since the indicator was powered on (1200 = 1 second)
Method Signature:
function STick : Integer;
NOTE: STick is maintained internally as an unsigned 32-bit integer. When the MSB rolls over, it appears as a large
negative number. Then it becomes decreasingly negative before rolling over to zero and becoming positive again.
Ensure that calculations involving STick take these transitions into account. It takes 41-42 days of continuous operation
for the STick value to rollover completely. Cycling power resets the count.

StopFTPServer
1280

Shuts down access for external devices to the FTP server
Method Signature:
function StopFTPServer : SysCode;
SysCode Value Returned:

SysOk Stopped Successfully
SuspendDisplay

920i
820i
1280

Suspends the display
Method Signature:
procedure SuspendDisplay;

SystemTime
920i
820i
880

882D
1280

Returns the current system date and time
Method Signature:
function SystemTime : DateTime;

Time$
920i
820i
880

882D
1280

Returns a string representing the system time contained in DT
Method Signature:
function Time$ (DT : DateTime) : String;

UnlockKey
920i
820i
880

882D
1280

Enables the specified front panel key; Possible values are: ZeroKey, GrossNetKey, TareKey, UnitsKey, PrintKey, Soft1Key,
Soft2Key, Soft3Key, Soft4Key, Soft5Key, NavUpKey, NavRightKey, NavDownKey, NavLeftKey, EnterKey, N1Key, N2Key, N3Key,
N4Key, N5Key, N6Key, N7Key, N8Key, N9Key, N0Key, DecpntKey, ClearKey
Method Signature:
function UnlockKey (K : Keys) : SysCode;
Parameters:

[in] K Key name
SysCode values returned:

SysInvalidKey The key specified is not valid
SysOK The function completed successfully

UnlockKeypad
920i
820i
880

882D
1280

Enables operation of the entire front panel keypad
Method Signature:
function UnlockKeypad : SysCode;
SysCode values returned:

SysPermissionDenied
SysOK The function completed successfully

Methods Description

Table 5-9. System Support Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 61

5.3 Serial I/O

WaitForEntry
920i
820i
880

882D
1280

Similar to GetEntry, WaitForEntry causes the user program to wait for operator input; Wait time is specified in 0.01-second
intervals (1/100 seconds); if the wait time is set to zero, the procedure will wait indefinitely or until the Enter key is pressed
NOTE: The UserEntry handler must be disabled (see DisableHandler on page 54) before using this procedure.
Method Signature:
procedure WaitForEntry (I : Integer);
Parameters:

[in] I Wait time value

Methods Description
Print

920i
820i
880

882D
1280

Requests a print operation using the print format specified by F; Output is sent to the port specified in the print format
configuration
Method Signature:
function Print (F : PrintFormat) : SysCode;
Parameters:

[in] F Print format

920i, 820i and 1280 PrintFormat values sent:
GrossFmt Gross format
NetFmt Net format
TrWInFmt Truck weigh-in format
TrRegFmt Truck register format (truck IDs and tare weights)
TrWOutFmt Truck weigh-out format
SPFmt Setpoint format
AccumFmt Accumulator format
AuxFmtx Auxiliary format (x = 1 - 20)

880 PrintFormat values sent:
GrossFmt Gross format
NetFmt Net format
SPFmt Setpoint format
AccumFmt Accumulator format

882D PrintFormat values sent:
PrintFormat1 Print format 1
PrintFormat2 Print format 2
PrintFormat3 Print format 3
PrintFormat4 Print format 4

SysCode values returned:
SysInvalidRequest The print format specified by F does not exist
SysQFull The request could not be processed because the print queue is full
SysOK The function completed successfully

Example:
Fmtout : PrintFormat;
…
Fmtout := NetFmt
Print (Fmtout);

Table 5-10. Serial I/O Methods

Methods Description

Table 5-9. System Support Methods (Continued)

iRite Programmer Manual

62 Visit our website www.RiceLake.com

Send
920i
820i
880

882D
1280

Writes an ASCII representation of the in-memory bytes of the integer or real number specified in <number> to the port specified by P
Method Signature:
procedure Send (P : Integer; <number>);
Parameters:

[in] P Serial port number
[in] <number> The integer or real number to output

Example:
Send (Port1, 123.55); –sends "<42><F7><19><9A>" (without the quotes or <> symbols) to Port 1
where:
<42> = 42 hex (66 decimal)
<F7> = F7 hex (247 decimal)
<19> = 19 hex (25 decimal)
<9A> = 9A hex (154 decimal)
Send (1, 4276803); –sends "<00>ABC" (without the quotes) to Port 1 - where <00> is an ASCII nul

SendChr
920i
820i
880

882D
1280

Writes the single character specified to the port specified by P
Method Signature:
procedure SendChr (P : Integer; character : Integer);
Parameters:

[in] P Serial port number
[in] character The decimal value of the character to transmit

Example:
SendChr (1, 65); –sends upper-case "A" (decimal 65) to Port 1

SendChrArray
920i

Writes a number of characters, specified by their decimal values in ChrArray, to the port specified by P. The range of values in the
array is 0-255. This API provides functionality similar to making repeated calls to the SendChr API, but without a transmission
delay between characters.
Method Signature:
function SendChrArray (P : Integer; data : ChrArray; Length : Integer) : SysCode;
Parameters:

[in] P Serial port number
[in] ChrArray The array of characters to output
[in] Length The number of bytes to transmit

SysCode values returned:
SysOutOfRange Length < 1 or > 100
SysInvalidPort The port number specified for P is not valid
SysOK The function completed successfully

Example:
data : ChrArray;

data[1] := 3;
data[2] := 4;
data[3] := 5;
data[4] := 6;
data[5] := 32;
data[6] := 0;
data[7] := 77;
data[8] := 220;

SendChrArray (1, data, 8);

Methods Description

Table 5-10. Serial I/O Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 63

SendNull
920i
820i
880

882D
1280

Writes an ASCII null character (decimal 00) to the port specified by P
Method Signature:
procedure SendNull (P : Integer);
Parameters:

[in] P Serial port number
Example:
SendNull (1); –sends an ASCII null character (decimal 00) to Port 1

SetPrintText
920i
820i
880

882D
1280

Sets the value of the user-specified format (1–99) to the text specified; The text can be any string of up to 16-characters;
If a string of more than 16-characters is specified, nothing is printed
Method Signature:
function SetPrintText (fmt_num : Integer ; text : String) : Syscode;
Parameters:

[in] fmt_num User-specified format number
[in] text Print format text

SysCode values returned:
SysOutOfRange The text is more than 16 characters
SysInvalidRequest The specified format number is out of the range of 1–99
SysOK The function completed successfully

Example:
SetPrintText(1, "User Pgm. Text");

StartStreaming
920i
820i
880

882D

Starts data streaming for the port number specified by P; Streaming must be enabled for the port in the indicator configuration
Method Signature:
function StartStreaming (P : Integer) : SysCode;
Parameters:

[in] P Serial port number
SysCode values returned:

SysInvalidPort The port number specified for P is not valid
SysInvalidRequest The port specified for P is not configured for streaming
SysOK The function completed successfully

Example:
StartStreaming (1);

StartStreaming
1280

Starts data streaming for the stream format specified by S; Streaming must be enabled for the port in the indicator configuration
Method Signature:
function StartStreaming (S : Integer) : SysCode;
Parameters:

[in] S Stream format number (1-4)
SysCode values returned:

SysInvalidRequest The stream format specified by S is not configured for streaming
SysOK The function completed successfully

Example:
StartStreaming (1);

StopStreaming
920i
820i
880

882D

Stops data streaming for the port number specified by P
Method Signature:
function StopStreaming (P : Integer) : SysCode;
Parameters:

[in] P Serial port number
SysCode values returned:

SysInvalidPort The port number specified for P is not valid
SysInvalidRequest The port specified for P is not configured for streaming
SysOK The function completed successfully

Example:
StopStreaming (1);

Methods Description

Table 5-10. Serial I/O Methods (Continued)

iRite Programmer Manual

64 Visit our website www.RiceLake.com

StopStreaming
1280

Stops data streaming for the stream format specified by S
Method Signature:
function StopStreaming (S : Integer) : SysCode;
Parameters:

[in] S Stream format number (1-4)
SysCode values returned:

SysInvalidRequest The stream format specified by S is not configured for streaming
SysOK The function completed successfully

Example:
StopStreaming (1);

Write
920i
820i
880

882D
1280

Writes the text specified in the <arg-list> to the port specified by P; A subsequent Write or WriteLn operation will begin where this
Write operation ends; An End-of-Line termination is not included at the end of the data sent to the port
NOTE: This procedure cannot be used to send null characters. Use the SendChr or SendNull procedure to send null
characters.
Method Signature:
procedure Write (P : Integer; <arg-list>);
Parameters:

[in] P Serial port number
[in] arg_list Print text

Example:
Write (1, "This is a test.");

WriteLn
920i
820i
880

882D
1280

Writes the text specified in the <arg-list> to the port specified by P, followed by the End-of-Line termination character(s) specified
in the configuration parameters for the specified port; A subsequent Write or WriteLn operation begins on the next line
NOTE: This procedure cannot be used to send null characters. Use the SendChr or SendNull procedure to send null
characters.
Method Signature:
procedure Write (P : Integer; <arg-list>);
Parameters:

[in] P Serial port number
[in] arg_list Print text

Example:
WriteLn (1, "This is another test.");

WriteOut
1280

Writes the text specified in the <arg-list> to the connection named by C; A subsequent WriteOut or WriteOutLn operation will
begin where this WriteOut operation ends; A carriage return is not included at the end of the data sent to the connection
Method Signature:
procedure WriteOut (C : String; <arg-list>);
Parameters:

[in] C Connection port number
[in] arg_list Print text

WriteOutLn
1280

Writes the text specified in the <arg-list> to the connection named by C, followed by a carriage return and a line feed (CR/LF);
A subsequent WriteOut or WriteOutLn opteration begins on the next line
Method Signature:
procedure WriteOutLn (C : String; <arg-list>);
Parameters:

[in] C Connection port number
[in] arg_list Print text

Methods Description

Table 5-10. Serial I/O Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 65

5.3.1 880 Port Numbering

Advanced Printing

Table 5-12. Advanced Printing Methods

Port Numbers Port Description
1 Com Port
2 USB Device Port
3 Ethernet Server
4 Ethernet Client
5 Serial Option Card- Channel 1
6 Serial Option Card- Channel 2

Table 5-11. Port Numbering Description

Methods Description
StartDocument
(ADVPRN)

1280

Opens a connection to the printer setup in the Advanced Printer settings under the Features section; Must use this function before
writing any data to the printer

EndDocument
(ADVPRN)

1280

Closes the connection to the printer setup in the Advanced Printer setting under the Features section; Document will not print if
this is not used after a StartDocument API is used
Method Signature:
Function(Connection : String) : Syscode;
Parameters:

[In] Connection This needs to be set to “ADVPRN”
SysCode values returned:

SysOK The function completed successfully
Example:

if StartDocument("ADVPRN") = SysOk then
 Writeoutln("ADVPRN","String data to print");
else
 DisplayStatus("Printer Error");
end if;
if EndDocument("ADVPRN") = SysOk then
 DisplayStatus("Document Printed");
else
 DisplayStatus("Printer Error");
end if;

iRite Programmer Manual

66 Visit our website www.RiceLake.com

5.4 Program Scale

5.5 Setpoints and Batching
NOTE: Unless otherwise stated, when an API with a VAR parameter returns a SysCode value other than SysOK, the VAR
parameter is not changed.

Methods Description
SubmitData

920i
1280
820

Passes data from a user program to the scale processor; weight, mode, and tare values are provided by the user program;
The displayed weight is the weight value minus tare; Gross/net mode is set by the gn parameter regardless of whether a tare
value is passed; This allows display of a net value when the net is known but gross and tare values are not available
NOTE: Because the user program supplies all weight data, weight data acquisition APIs are not valid for program scales.
When used with program scales, these APIs (including GetGross, GetNet, GetTare) will typically return a SysCode value
of SysInvalidScale. Always check the returned SysCode value of scale-related APIs to ensure valid data.
Syntax:
function SubmitData (scale : Integer; weight : Real; gn : Mode; units : UnitType; tare : Real) : SysCode;
SysCode values returned:

SysInvalidScale The scale is not set up as a program scale
SysOK The function completed successfully

SubmitDSPData Submit data to a program scale; This function works much like SubmitData() but has fewer parameters; New to this function is the
dp : Decimal_Type that allows the program to set the decimal point for display; The call assumes Gross mode and primary units
Syntax:
function SubmitDSPData(scale : integer; weight : real; units : string; dp : Decimal_Type) : SysCode;
SysCode values returned:

SysInvalidScale The scale is not set up as a program scale
SysOK The function completed successfully

Table 5-13. Program Scale Methods

Command Description
DisableSP

920i
820i
880

882D
1280

Disables operation of setpoint SP
Method Signature:
function DisableSP (SP : Integer) : SysCode;
Parameters:

[in] SP Setpoint number
SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist
SysBatchRunning Setpoint SP cannot be disabled while a batch is running
SysInvalidRequest The setpoint specified by SP cannot be enabled or disabled
SysOK The function completed successfully

Example:
DisableSP (4);

EnableSP
920i
820i
880

882D
1280

Enables operation of setpoint SP
Method Signature:
function EnableSP (SP : Integer) : SysCode;
Parameters:

[in] SP Setpoint number
SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist
SysBatchRunning Setpoint SP cannot be enabled while a batch is running
SysInvalidRequest The setpoint specified by SP cannot be enabled or disabled
SysOK The function completed successfully

Example:
EnableSP (4);

Table 5-14. Setpoint and Batching Commands

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 67

GetBatchingMode
920i
820i
880

882D
1280

Returns the current batching mode (BATCHNG parameter)
Method Signature:
function GetBatchingMode : BatchingMode;
BatchingMode values returned:

Off Batching mode is off
Auto Batching mode is set to automatic
Manual Batching mode is set to manual

NOTE: The 882D does not have an Auto Batching mode.
GetBatchStatus

920i
820i
880

882D
1280

Sets S to the current batch status
Method Signature:
function GetBatchStatus (VAR S : BatchStatus) : SysCode;
Parameters:

[out] S Batch status
BatchStatus values returned:

BatchComplete The batch is complete
BatchStopped The batch is stopped
BatchRunning A batch routine is in progress
BatchPaused The batch is paused

SysCode values returned:
SysInvalidRequest The BATCHNG configuration parameter is set to OFF
SysOK The function completed successfully

GetCurrentSP
920i
820i
880

882D
1280

Sets SP to the number of the current batch setpoint
Method Signature:
function GetCurrentSP (VAR SP : Integer) : Syscode;
Parameters:

[out] SP Setpoint number
SysCode values returned:

SysInvalidRequest The BATCHNG configuration parameter is set to OFF
SysBatchNotRunning No batch routine is running
SysOK The function completed successfully

Example:
CurrentSP : Integer;
…
GetCurrentSP (CurrentSP);
WriteLn (1, "Current setpoint is " + IntegerToString(CurrentSP,0);

GetSPBand
920i
820i
880

1280

Sets V to the current band value (BANDVAL parameter) of the setpoint SP
Method Signature:
function GetSPBand (SP : Integer; VAR V : Real) : SysCode;
Parameters:

[in] SP Setpoint number
[out] V Band value

SysCode values returned:
SysInvalidSetpoint The setpoint number specified by SP is less than 1 or greater than the maximum number of

setpoints
SysInvalidRequest The setpoint specified by SP has no band value (BANDVAL) parameter
SysOK The function completed successfully.

Example:
SP7Bandval : Real;
…
GetSPBand (7, SP7BAndval);
WriteLn (1, "Current Band Value of SP7 is " + RealToString(SP7Bandval,0,2));

Command Description

Table 5-14. Setpoint and Batching Commands (Continued)

iRite Programmer Manual

68 Visit our website www.RiceLake.com

GetSPCaptured
920i
820i
880

882D
1280

Sets V to the weight value that satisfied the setpoint SP
Method Signature:
function GetSPCaptured (SP : Integer; VAR V : Real) : SysCode;
Parameters:

[in] SP Setpoint number
[out] V Captured weight value

SysCode values returned:
SysInvalidSetpoint The setpoint number specified by SP is less than 1 or greater than the maximum number of

setpoints
SysInvalidRequest The setpoint is off and has no captured value
SysOK The function completed successfully

GetSPCount
920i
820i
1280

For DINCNT setpoints, sets Count to the value specified for setpoint SP
Method Signature:
function GetSPCount (SP : Integer; VAR Count : Integer) : SysCode;
Parameters:

[in] SP Setpoint number
[out] Count Count value

SysCode values returned:
SysInvalidSetpoint The setpoint number specified by SP is less than 1 or greater than the maximum number of

setpoints
SysInvalidRequest The specified setpoint is not a DINCNT setpoint
SysOK The function completed successfully

GetSPDuration
920i
820i
1280

For time of day (TOD) setpoints, sets DT to the current trip duration (DURATION parameter) of setpoint SP
Method Signature:
function GetSPDuration (SP : Integer; VAR DT : DateTime) : SysCode;
Parameters:

[in] SP Setpoint number
[out] DT Setpoint trip duration

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no DURATION parameter
SysOK The function completed successfully

Example:
SP3DUR : DateTime;
…
GetSPTime (3, SP3DUR);
WriteLn (Port1, "Current Trip Duration of SP3 is", SP3DUR);

GetSPHyster
920i
820i
880

1280

Sets V to the current hysteresis value (HYSTER parameter) of the setpoint SP
Method Signature:
function GetSPHyster (SP : Integer; VAR V : Real) : SysCode;
Parameters:

[in] SP Setpoint number
[out] V Hysteresis value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no hysteresis HYSTER) parameter
SysOK The function completed successfully

Example:
SP5Hyster : Real;
…
GetSPHyster (5, SP5Hyster);
WriteLn (1, "Current Hysteresis Value of SP5 is " + RealToString(SP5Hyster,0,2));

Command Description

Table 5-14. Setpoint and Batching Commands (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 69

GetSPNSample
920i
820i

For averaging (AVG) setpoints, sets N to the current number of samples (NSAMPLE parameter) of the setpoint SP
Method Signature:
function GetSPNSample (SP : Integer; VAR N : Integer) : SysCode;
Parameters:

[in] SP Setpoint number
[out] N Sample value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no NSAMPLE parameter
SysOK The function completed successfully

Example:
SP5NS : Integer;
…
GetSPNSample (5, SP5NS);
WriteLn (1, "Current NSample Value of SP5 is " + IntegerToString(SP5NS,0));

GetSPPreact
920i
820i
880

882D
1280

Sets V to the current preact value (PREACT parameter) of the setpoint SP
Method Signature:
function GetSPPreact (SP : Integer; VAR V : Real) : SysCode;
Parameters:

[in] SP Setpoint number
[out] V Preact value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no preact (PREACT) parameter
SysOK The function completed successfully

Example:
SP2Preval : Real;
…
GetSPPreact (2, SP2Preval);
WriteLn (1, "Current Preact Value of SP2 is " + RealToString(SP2Preval,0,2));

GetSPPreCount
920i
820i
1280

Sets Count to the preact count value (PCOUNT parameter) of DINCNT type setpoint SP
Method Signature:
function GetSPPreCount (SP : Integer; VAR Count : Integer) : SysCode;
Parameters:

[in] SP Setpoint number
[out] Count Preact count value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP is not DINCNT type parameter
SysOK The function completed successfully

Example:
SP3PCount : Integer;
…
GetSPPreCount (3, SP3PCount);
WriteLn (1, "Current Preact Learn Value of SP3 is " + IntegerToString(SP3PCount,0));

Command Description

Table 5-14. Setpoint and Batching Commands (Continued)

iRite Programmer Manual

70 Visit our website www.RiceLake.com

GetSPTime
920i
820i
1280

For time of day (TOD) setpoints, sets DT to the current trip time (TIME parameter) of the setpoint SP
Method Signature:
function GetSPTime (SP : Integer; VAR DT : DateTime) : SysCode;
Parameters:

[in] SP Setpoint number
[out] DT Current setpoint trip time

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no TIME parameter
SysOK The function completed successfully

Example:
SP2TIME : DateTime;
…
GetSPTime (2, SP2TIME);
WriteLn (Port1, "Current Trip Time of SP2 is", SP2TIME);

GetSPValue
920i
820i
880

882D
1280

Sets V to the current value (VALUE parameter) of the setpoint SP
Method Signature:
function GetSPValue (SP : Integer; VAR V : Real) : SysCode;
Parameters:

[in] SP Setpoint number
[out] V Setpoint value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no VALUE parameter
SysOK The function completed successfully

Example:
SP4Val : Real;
…
GetSPValue (4, SP4Val);
WriteLn (1, "Current Value of SP4 is " + RealToString(SP4Val,0,2));

GetSPVover
920i
820i

For checkweigh (CHKWEI) setpoints, sets V to the current overrange value (VOVER parameter) of the setpoint SP
Method Signature:
function GetSPVover (SP : Integer; VAR V : Real) : SysCode;
Parameters:

[in] SP Setpoint number
[out] V Overrange value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no VOVER parameter
SysOK The function completed successfully

Example:
SP3VOR : Real;
…
GetSPVover (3, SP3VOR);
WriteLn (1, "Current Overrange Value of SP3 is " + RealToString(SP3VOR,0,2));

Command Description

Table 5-14. Setpoint and Batching Commands (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 71

GetSPVunder
920i
820i

For checkweigh (CHKWEI) setpoints, sets V to the current underrange value (VUNDER parameter) of the setpoint SP
Method Signature:
function GetSPVunder (SP : Integer; VAR V : Real) : SysCode;
Parameters:

[in] SP Setpoint number
[out] V Underrange value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no VUNDER parameter
SysOK The function completed successfully

Example:
SP4VUR : Real;
…
GetSPVunder (4, SP4VUR);
WriteLn (1, "Current Underrange Value of SP4 is " + RealToString(SP4VUR,0,2));

PauseBatch
920i
820i
880

882D
1280

Initiates a latched pause of a running batch process
Method Signature:
function PauseBatch : SysCode;
SysCode values returned:

SysPermissionDenied The BATCHNG configuration parameter is set to OFF
SysBatchRunning No batch routine is running
SysOK The function completed successfully

ResetBatch
920i
820i
880

882D
1280

Terminates a running, stopped, or paused batch process and resets the batch system
Method Signature:
function ResetBatch : SysCode;
SysCode values returned:

SysPermissionDenied The BATCHNG configuration parameter is set to OFF
SysBatchRunning No batch routine is running
SysOK The function completed successfully

SaveSetpoint
Updates

1280

Saves setpoint changes made in iRite to permanent memory
Method Signature:
function SavesetpointUpdates;
Parameters:

None
SysCode values returned:

None
SetBatchingMode

920i
820i
880

882D
1280

Sets the batching mode (BATCHNG parameter) to the value specified by M
Method Signature:
function SetBatchingMode (M : BatchingMode) : SysCode;
Parameters:

[in] SP Setpoint number
[in] M Batching mode

BatchingMode values sent:
Off Batching mode is off
Auto Batching mode is set to automatic
Manual Batching mode is set to manual

NOTE: The 882D does not have an Auto Batching mode.
SysCode values returned:

SysInvalidMode The batching mode specified by M is not valid
SysOK The function completed successfully

Command Description

Table 5-14. Setpoint and Batching Commands (Continued)

iRite Programmer Manual

72 Visit our website www.RiceLake.com

SetSPBand
920i
820i
880

1280

Sets the band value (BANDVAL parameter) of setpoint SP to the value specified by V
Method Signature:
function SetSPBand (SP : Integer; V : Real) : SysCode;
Parameters:

[in] SP Setpoint number
[in] V Band value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no band value (BANDVAL) parameter
SysBatchRunning The value cannot be changed because a batch process is currently running
SysOK The function completed successfully

Example:
SP7Bandval : Real;
…
SP7Bandval := 10.0
SetSPBand (7, SP7Bandval);

SetSPCount
920i
820i
1280

For DINCNT setpoints, sets the VALUE parameter of setpoint SP to the value specified by Count
Method Signature:
function SetSPCount (SP : Integer; Count : Integer) : SysCode;
Parameters:

[in] SP Setpoint number
[in] Count Count value

SysCode values returned:
SysInvalidSetpoint The setpoint number specified by SP is less than 1 or greater than the maximum number of

setpoints
SysInvalidRequest The specified setpoint is not a DINCNT setpoint
SysOK The function completed successfully

SetSPDuration
920i
820i
1280

For time of day (TOD) setpoints, sets the trip duration (DURATION parameter) of setpoint SP to the value specified by DT
Method Signature:
function SetSPDuration (SP : Integer; DT : DateTime) : SysCode;
Parameters:

[in] SP Setpoint number
[in] DT Setpoint trip duration

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no DURATION parameter
SysBatchRunning The value cannot be changed because a batch process is currently running
SysOutOfRange The value specified for DT is not in the allowed range for setpoint SP
SysOK The function completed successfully

Example:
SP3DUR : DateTime;
…
SP3DUR := 00:3:15
SetSPDuration (3, SP3DUR);

Command Description

Table 5-14. Setpoint and Batching Commands (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 73

SetSPHyster
920i
820i
880

1280

Sets the hysteresis value (HYSTER parameter) of setpoint SP to the value specified by V
Method Signature:
function SetSPHyster (SP : Integer; V : Real) : SysCode;
Parameters:

[in] SP Setpoint number
[in] V Hysteresis value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no hysteresis (HYSTER) parameter
SysBatchRunning The value cannot be changed because a batch process is currently running
SysOK The function completed successfully

Example:
SP5Hyster : Real;
…
SP5Hyster := 15.0;
SetSPHyster (5, SP5Hyster);

SetSPNSample
920i
820i

For averaging (AVG) setpoints, sets the number of samples (NSAMPLE parameter) of setpoint SP to the value specified by N
Method Signature:
function SetSPNSample (SP : Integer; N : Integer) : SysCode;
Parameters:

[in] SP Setpoint number
[in] N Sample value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no NSAMPLE parameter.
SysBatchRunning The value cannot be changed because a batch process is currently running.
SysOutOfRange The value specified for N is not in the allowed range for setpoint SP.
SysOK The function completed successfully.

Example:
SP5NS : Integer;
…
SP5NS := 10
SetSPNSample (5, SP5NS);

SetSPPreact
920i
820i
880

882D
1280

Sets the preact value (PREACT parameter) of setpoint SP to the value specified by V
Method Signature:
function SetSPPreact (SP : Integer; V : Real) : SysCode;
Parameters:

[in] SP Setpoint number
[in] V Preact value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no preact (PREACT) parameter
SysBatchRunning The value cannot be changed because a batch process is currently running
SysOK The function completed successfully

Example:
SP2PreVal : Real;
…
SP2PreVal := 30.0;
SetSPPreact (2, SP2PreVal);

Command Description

Table 5-14. Setpoint and Batching Commands (Continued)

iRite Programmer Manual

74 Visit our website www.RiceLake.com

SetSPPreCount
920i
820i
880

1280

Sets the preact count value (PCOUNT parameter) of setpoint SP to the value specified by Count
Method Signature:
function SetSPPreCount (SP : Integer; Count : Integer) : SysCode;
Parameters:

[in] SP Setpoint number
[in] Count Preact count value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP is not type DINCNT or Count is less than 0
SysOK The function completed successfully

Example:
SP3PCount : Integer;
…
SP3Pcount := 4;
SetSPPreCount (3, SP3PCount);

SetSPTime
920i
820i

For time of day (TOD) setpoints, sets the trip time (TIME parameter) of setpoint SP to the value specified by DT
Method Signature:
function SetSPTime (SP : Integer; DT : DateTime) : SysCode;
Parameters:

[in] SP Setpoint number
[in] DT Setpoint trip time

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no TIME parameter
SysBatchRunning The value cannot be changed because a batch process is currently running
SysOutOfRange The value specified for DT is not in the allowed range for setpoint SP
SysOK The function completed successfully

Example:
SP2TIME : DateTime;
…
SP2TIME := 08:15:00
SetSPTime (2, SP2TIME);

SetSPTime
1280

For time of day (TOD) setpoints, sets the trip time (TIME parameter) of setpoint SP to the value specified by DT
Method Signature:
function SetSPTime (SP : Integer; DT : DateTime) : SysCode;
Parameters:

[in] SP Setpoint number
[in] DT Setpoint trip time

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no TIME parameter
SysBatchRunning The value cannot be changed because a batch process is currently running
SysOutOfRange The value specified for DT is not in the allowed range for setpoint SP
SysOK The function completed successfully

Example:
SP2TIME : DateTime;
…
SetTime (SP2Time, 08, 15, 00);
SetSPTime (2, SP2Time);

Command Description

Table 5-14. Setpoint and Batching Commands (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 75

SetSPValue
920i
820i
880

882D
1280

Sets the value (VALUE parameter) of setpoint SP to the value specified by V
Method Signature:
function SetSPValue (SP : Integer; V : Real) : SysCode;
Parameters:

[in] SP Setpoint number
[in] V Setpoint value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no VALUE parameter
SysBatchRunning The value cannot be changed because a batch process is currently running
SysOutOfRange The value specified for V is not in the allowed range for setpoint SP
SysOK The function completed successfully

Example:
SP4Val : Real;
…
SP4Val := 350.0;
SetSPValue (4, SP4Val);

SetSPVover
920i
820i

For checkweigh (CHKWEI) setpoints, sets the overrange value (VOVER parameter) of setpoint SP to the value specified by V
Method Signature:
function SetSPVover (SP : Integer; V : Real) : SysCode;
Parameters:

[in] SP Setpoint number
[in] V Overrange value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no VOVER parameter
SysOK The function completed successfully

Example:
SP3VOR : Real;
…
SP3VOR := 35.5
SetSPVover (3, SP3VOR);

SetSPVunder
920i
820i

For checkweigh (CHKWEI) setpoints, sets the underrange value (VUNDER parameter) of setpoint SP to the value specified by V
Method Signature:
function SetSPVunder (SP : Integer; V : Real) : SysCode;
Parameters:

[in] SP Setpoint number
[in] V Underrange

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no VUNDER parameter
SysOK The function completed successfully

Example:
SP4VUR : Real;
…
SP4VUR := 26.4
SetSPVunder (4, SP4VUR);

StartBatch
920i
820i
880

882D
1280

Starts or resumes a batch run
Method Signature:
function StartBatch : SysCode;
SysCode values returned:

SysPermissionDenied The BATCHNG configuration parameter is set to OFF
SysBatchRunning A batch process is already in progress
SysOK The function completed successfully

Command Description

Table 5-14. Setpoint and Batching Commands (Continued)

iRite Programmer Manual

76 Visit our website www.RiceLake.com

5.6 Digital I/O Control
In the following digital I/O control functions, slot 0 represents the digital I/O available on the CPU board of the indicator. The
920i supports six onboard bits, the 880 and 882D both support four, and the 820i and 1280 both support eight. Digital I/O on
expansion boards each support 24-bits.

StopBatch
920i
820i
880

882D
1280

Stops a currently running batch
Method Signature:
function StopBatch : SysCode;
SysCode values returned:

SysPermissionDenied The BATCHNG configuration parameter is set to OFF
SysBatchNotRunning No batch process is running
SysOK The function completed successfully

Command Description
GetDigAll

1280
Sets V to the bitmasked value of all inputs/outputs in slot S; See SetAllDigOut on page 78 for explanation of bitmasked integer
Method Signature:
function GetDigAll (S : Integer; VAR V : Integer) : SysCode;
Parameters:

[in] S Slot number
[out] V Digital IO status

SysCode Values Returned:
SysInvalidRequest The slot does not contain a valid DIO Card
SysOK SysOK The function completed successfully

Example:
dioStatus : integer;
GetDigAll(0, dioStatus);

GetDigin
920i
820i
880

882D
1280

Sets V to the value of the digital input assigned to slot S, bit D; GetDigin sets the value of V to 0 if the input is on, to 1 if the input
is off. Note that the values returned are the reverse of those used when setting an output with the SetDigout function; GetDigin
can monitor any digital I/O point that is not configured as OFF or OUTPUT
Method Signature:
function GetDigin (S : Integer; D : Integer; VAR V : Integer) : SysCode;
Parameters:

[in] S Slot number
[in] D Bit number
[out] V Digital input status

SysCode values returned:
SysInvalidRequest The slot and bit assignment specified is not a valid digital input
SysOK The function completed successfully

Example:
DIGINS0B3 : Integer;
…
GetDigin (0, 3, DIGINS0B3);
WriteLn (1, "Digin S0B3 status is " + IntegerToString(DIGINS0B3,0));

Table 5-15. Digital I/O Control Commands

Command Description

Table 5-14. Setpoint and Batching Commands (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 77

GetDigout
920i
820i
880

882D
1280

Sets V to the value of the digital output assigned to slot S, bit D; GetDigout sets the value of V to 0 if the output is off, to 1 if the
output is on
Method Signature:
function GetDigout (S : Integer; D : Integer; VAR V : Integer) : SysCode;
Parameters:

[in] S Slot number
[in] D Bit number
[out] V Digital output status

SysCode values returned:
SysInvalidRequest The slot and bit assignment specified is not a valid digital output
SysOK The function completed successfully

Example:
DIGOUTS0B2 : Integer;
…
GetDigout (0, 2, DIGOUTS0B2);
WriteLn (1, "Digout S0B2 status is " + IntegerToString(DIGOUTS0B2,0));

SetAllDigOutOff
1280

Sets all digital outputs on slotNum to off
Method Signature
function SetAllDigOutOff (S : Integer) : SysCode;
Parameters:

[in] S Slot number
SysCodes returned

SysInvalidRequest The slot and bit assignment specified is not a valid digital output
SysOK The function completed successfully

SetDigout
920i
820i
880

882D
1280

Sets value of the digital output assigned to slot S, bit D, to the value specified by V; det V to 1 to turn the specified output on; set
V to 0 to turn the output off
Method Signature:
function SetDigout (S : Integer; D : Integer; V : Integer) : SysCode;
Parameters:

[in] S Slot number
[in] D Bit number
[in] V Digital output status

SysCode values returned:
SysInvalidRequest The slot and bit assignment specified is not a valid digital output
SysOutOfRange The value V must be 0 (inactive) or 1 (active)
SysOK The function completed successfully

Example:
DIGOUTS0B2 : Integer;
…
DIGOUTS0B2 := 0;
SetDigout (0, 2, DIGOUTS0B2);

Command Description

Table 5-15. Digital I/O Control Commands (Continued)

iRite Programmer Manual

78 Visit our website www.RiceLake.com

5.7 Fieldbus Data

SetAllDigOut
1280

Allows the application to set the state of a bank/card of outputs with a single function call vs. a series of individual calls.
Method Signature:
function SetAllDigOut (S : Integer, I : Integer) : SysCode;
Parameters:

[in] S Slot number that the DIO card is in
[in] I Bitmasked integer for all outputs (see bitmask explanation below)

SysCode values returned:
SysInvalidRequest The slot and bit assignment specified is not a valid digital output
SysOK The function completed successfully

For example:
SetAllDigOut command sets the input/output states of the DIO card using a bitmasked decimal number converted from a binary
number. The binary number represents output states of each output, read from right to left. A value of 1 sets the output to ON and
a value of 0 sets the output to OFF. To convert a binary number to a bitmasked decimal, correlate each bit from right to left with a
consecutive integer as follows:

• Bit 1 = 20= 1
• Bit 2 = 21 = 2
• Bit 3 = 22 = 4
• Bit 4 = 23 = 8
• Bit 5 = 24 = 16

Continue consecutively up to 8 values (27) for onboard DIO and up to 24 values (223) for DIO cards. The bitmasked decimal
integer is the sum of all of the integers that are set to ON or 1
SetAllDigOut(3, 68)
DIO card is in slot 3; bits 3 and 7 are ON
68 = (22 + 26) or 68 = 4 + 64 Binary number is: 01000100 (read right to left)
SetAllDigOut(0, 86)
Onboard DIO; bits 2, 3, 5 and 7 are ON
86 = (21 + 22 + 24 + 26) or 86 = 2 + 4 + 16 + 64 Binary number is: 01010110 (read right to left)

Methods Description
GetFBStatus

920i
1280

Returns the status word for the specified fieldbus, see appropriate fieldbus addendum for a description of the status word format
Method Signature:
function GetFBStatus (fieldbus_no : Integer; scale_no : Integer; VAR status : Integer) : SysCode;
Parameters:

[in] fieldbus_no Fieldbus number
[in] scale_no Scale number
[out] status Fieldbus status

SysCode values returned:
SysInvalidRequest
SysOK The function completed successfully

GetImage
920i
1280

For integer data, GetImage returns the content of the BusImage for the specified fieldbus
Method Signature:
function GetImage (fieldbus_no : Integer; VAR data : BusImage) : SysCode;
Parameters:

[in] fieldbus_no Fieldbus number
[out] BusImage Bus image

SysCode values returned:
SysInvalidRequest
SysOK The function completed successfully

Table 5-16. Fieldbus Methods

Command Description

Table 5-15. Digital I/O Control Commands (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 79

5.8 Analog Output Operation

GetImageReal
920i
1280

For real data, GetImage returns the content of the BusImageReal for the specified fieldbus
Method Signature:
function GetImageReal (fieldbus_no : Integer; VAR data : BusImageReal) : SysCode;
Parameters:

[in] fieldbus_no Fieldbus number
[out] BusImageReal Bus image

SysCode values returned:
SysInvalidRequest
SysOK The function completed successfully

SetImage
920i
1280

For integer data, SetImage sets the content of the BusImage for the specified fieldbus
Method Signature:
function SetImage (fieldbus_no : Integer; data : BusImage) : SysCode;
Parameters:

[in] fieldbus_no Fieldbus number
[in] BusImage Bus image

SysCode values returned:
SysInvalidRequest
SysOK The function completed successfully

SetImageReal
920i
1280

For real data, SetImageReal sets the content of the BusImageReal for the specified fieldbus
Method Signature:
function SetImage (fieldbus_no : Integer; data : BusImageReal) : SysCode;
Parameters:

[in] fieldbus_no Fieldbus number
[in] BusImageReal Bus image

SysCode values returned:
SysInvalidRequest
SysOK The function completed successfully

Methods Description
SetAlgout

920i
820i
880

882D
1280

Sets the analog output card in slot S to the percentage P; Negative P values are set to zero; Values greater than 100.0 are set to 100.0
Method Signature:
function SetAlgout (S : Integer; P : Real) : SysCode;
Parameters:

[in] S Slot number
[in] P Analog output percentage value

SysCode values returned:
SysInvalidPort The specified slot (S) is not a valid analog output
SysInvalidRequest The analog output is not configured from program control
SysOK The function completed successfully

Table 5-17. Analog Output Operation Methods

Methods Description

Table 5-16. Fieldbus Methods (Continued)

iRite Programmer Manual

80 Visit our website www.RiceLake.com

5.9 Email

5.10 Pulse Input Operation

Methods Description
SendEmail

1280
Sends email through configured email server using the to, from, subject and body specified in the API call.
Method Signature:
function SendEmail (TO : String; FROM : string; SUBJECT : string; BODY : string) : SysCode;
Parameters:

<Self Explanatory>
SysCode values returned:

SysInvalidToAddress Supplied to address is not in the correct format;
This does not check if the to address actually exists only if the format is correct

SysInvalidFromAddress Supplied from address is not in the correct format;
This does not check if the to address actually exists only if the format is correct

SysInvalidSubject Supplied subject is not within length limits;
Subject length must be greater than 0 and less than or equal to 128 characters

SysInvalid NetworkConfig There is an issue with the email configuration in the 1280 setup;
Possibilities include incorrect port, incorrect address, invalid username/password and
connectivity issues

SendEmailFormat
1280

Sends email through configured email server using the to, from, subject and body specified in the API call. The print format is
generated and then used as the body of the email.
Method Signature:
function SendEmailFormat (TO : String; FROM : string; SUBJECT : string; PF : PrintFormat) : SysCode;
Parameters:

<Self Explanatory>
SysCode values returned:

SysInvalidToAddress Supplied to address is not in the correct format;
This does not check if the to address actually exists only if the format is correct

SysInvalidFromAddress Supplied from address is not in the correct format;
This does not check if the to address actually exists only if the format is correct

SysInvalidSubject Supplied subject is not within length limits;
Subject length must be greater than 0 and less than or equal to 128 characters

SysInvalid NetworkConfig There is an issue with the email configuration in the 1280 setup;
Possibilities include incorrect port, incorrect address, invalid username/password and
connectivity issues

Table 5-18. Analog Output Operation Methods

Methods Description
ClearPulseCount

920i
820i
882D
1280

Sets the pulse count of the pulse input card in slot S to zero (see note below for 1280 and 882D)
Method Signature:
function ClearPulseCount (S : Integer) : SysCode;
Parameters:

[in] S Slot number
SysCode values returned:

SysInvalidCounter The specified counter (S) is not a valid pulse input
SysOK The function completed successfully

PulseCount
920i
820i
882D
1280

Sets C to the current pulse count of the pulse input card in slot S (see note below for 1280 and 882D)
Method Signature:
function PulseCount (S : Integer; VAR C : Integer) : SysCode;
Parameters:

[in] S Slot number
[out] C Current pulse count

SysCode values returned:
SysInvalidCounter The specified counter (S) is not a valid pulse input
SysOK The function completed successfully

Table 5-19. Pulse Input Operation Methods

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 81

NOTES: When using pulse functions on the 1280 and 882D that do not support a Pulse Input card:
1280 – Pulse support is available on the 8 onboard Digital IO when set to function “PulseIn”. Replace the Slot number
above with the Bit number.
882D – Two pulse input channels are supported by onboard hardware. Replace the Slot number above with the Pulse
Input number 1 or 2.

5.11 Display Operation

PulseRate
920i
820i
882D

Sets R to the current pulse rate (in pulses per second) of the pulse input card in slot S (see note below for 1280 and 882D)
Method Signature:
function PulseRate (S : Integer; VAR R : Integer) : SysCode;
Parameters:

[in] S Slot number
[out] C Current pulse rate

SysCode values returned:
SysInvalidCounter The specified counter (S) is not a valid pulse input
SysOK The function completed successfully

Methods Description
ClosePrompt

920i
820i
880

882D
1280

Closes a prompt opened by the PromptUser, PromptNumeric or PromptPassword function
Method Signature:
procedure ClosePrompt;

DisplayStatus
920i
820i
880

882D
1280

Displays the string msg in the front panel status message area; The length of string msg should not exceed 32 characters
NOTE: On the 880 indicator, the message will scroll across the available six digit display.
Method Signature:
procedure DisplayStatus (msg : String);
Parameters:

[in] msg Display text
GetEntry

920i
820i
880

882D
1280

Retrieves the user entry from a programmed prompt.
Method Signature:
function GetEntry : String;

PromptUser
920i
820i
880

882D
1280

Opens the alpha entry box and places the string msg in the user prompt area
Method Signature:
function PromptUser (msg : String) : SysCode;
Parameters:

[in] msg Prompt text
SysCode values returned:

SysRequestFailed The prompt could not be opened
SysOK The function completed successfully

PromptPassword
1280

Brings up a password protected alpha user prompt
Method Signature:
function PromptPassword (msg : String) : SysCode;
Parameters:

[in] msg Prompt text
SysCode values returned:

SysRequestFailed The prompt could not be opened
SysOK The function completed successfully

Table 5-20. Display Operation Methods

Methods Description

Table 5-19. Pulse Input Operation Methods (Continued)

iRite Programmer Manual

82 Visit our website www.RiceLake.com

5.12 Display Programming

PromptNumeric
1280

Brings up a numeric user prompt
Method Signature:
function PromptNumeric (msg : String) : SysCode;
Parameters:

[in] msg Prompt text
SysCode values returned:

SysRequestFailed The prompt could not be opened
SysOK The function completed successfully

SelectScreen
920i
1280

Selects the configured screen, N, to show on the indicator display
Method Signature:
function SelectScreen (N : Integer) : SysCode;
Parameters:

[in] N Screen number
SysCode values returned:

SysInvalidRequest The value specified for N is less than 1 or greater than 10 (920i) or 99 (1280)
SysOK The function completed successfully

SetEntry
920i
820i
880

882D
1280

Sets the user entry for a programmed prompt; This procedure can be used to provide a default value for entry box text when
prompting the operator for input; Up to 1000 characters can be specified
NOTE: For the 1280, call SetEntry before opening the prompt with PromptUser.
Method Signature:
procedure SetEntry (S : String);

UpdateEntry If using an external keyboard, this API is required to update data typed in on the keyboard; Works in conjunction with
PortCharReceived or equivalent handler
Method Signature:
procedure UpdateEntry (userInput : string);
Parameters:

[in] userInput string value collected from external keyboard to update the data entry box in a prompt

Methods Description
BusyShow

1280
Shows the busy circle icon on screen, dimming the rest of the screen and disabling all touch functionality
Method Signature:
function BusyShow : SysCode;
SysCode values returned:

SysOK The function completed successfully
BusyHide

1280
Hides the busy circle icon on screen, restores the brightness and enables all touch functionality
Method Signature:
function BusyHide : SysCode;
SysCode values returned:

SysOK The function completed successfully
CaptureImageFrom
VivotekIP7361

1280

Automatically appends a .jpg to the filename; Image is stored to the microSD card in the 1280 in the “sdimages” folder; This API
only works with the Vivotek IP7361 camera
Method Signature:
function CaptureImageFromVivotekIP7361 (source : String, filepath ; String) : SysCode
Parameters:

[in] source IP address in quotes (“192.168.10.2”)
[in] filepath name of the file without an extension (“TruckPic”)

SysCode values returned:
SysOK The function completed successfully

Table 5-21. Display Programming Methods

Methods Description

Table 5-20. Display Operation Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 83

ClearGraph
920i

Clears a graph by setting all elements of a DisplayImage array to zero
Method Signature:
procedure ClearGraph (VAR graph_array : DisplayImage) : SysCode;
Parameters:

[out] graph_array Graph identifier
DrawGraphic

920i
Displays or erases a graphic defined in the bitmap.iri file incorporated into the user program source (.src) file, see Section 6.6 on
page 121 for more information about display programming
Method Signature:
function DrawGraphic (gr_num : Integer; x_start : Integer; y_start : Integer; bitmap : DisplayImage; color : Color_type) : SysCode;
Parameters:

[in] gr_num Graphic number
[in] x_start X-axis starting pixel location
[in] y_start Y-axis starting pixel location
[in] bitmap Graphic bitmap
[in] color Color type

SysCode values returned:
SysDeviceError The value specified for gr_num is greater than 100
SysOK The function completed successfully

GraphCreate
920i

Assigns storage and defines the graph display type for use by other graphing functions
Method Signature:
function GraphCreate (graphic_no : Integer; bitmap : DisplayImage; color : Color_type; kind : GraphType) : SysCode;
Parameters:

[in] graphic_no Graphic number
[in] bitmap Bitmap
[in] color Graphic color
[in] kind Graphic kind

SysCode values returned:
SysInvalidRequest The DisplayImage specified by bitmap does not exist
SysOK The function completed successfully

Example:
G_Graph1 : DisplayImage;
 result : Syscode;
begin
 result := GraphCreate(1, G_Graph1, Black, Bar);
 if result = SysOK then
 result :=GraphInit(71,30,60,110,240);
 end if;
end;

Methods Description

Table 5-21. Display Programming Methods (Continued)

iRite Programmer Manual

84 Visit our website www.RiceLake.com

GraphInit
920i

Sets the location of the graph on the display; x_start and y_start values specify the distance, in pixels, from top left corner of the
display at which the top left corner of the graph is shown; Height and width specify the graph size, in pixels (full display size is 240
pixels high by 320 pixels wide)
Method Signature:
function GraphInit (graphic_no : Integer; x_start : Integer; y_start : Integer; height : Integer; width : Integer) : SysCode;
Parameters:

[in] graphic_no Graphic number
[in] x_start X-axis starting pixel location
[in] y_start Y-axis starting pixel location
[in] height Graphic height
[in] width Graphic width

SysCode values returned:
SysInvalidRequest The DisplayImage specified by bitmap does not exist
SysOutOfRange Specified parameters exceed display height or width, or are too small to accommodate the graphic
SysDeviceError Internal error
SysOK The function completed successfully

Example:
G_Graph1 : DisplayImage;
 result : Syscode;
begin
 result := GraphCreate(1, G_Graph1, Black, Bar);
 if result = SysOK then
 result :=GraphInit(71,30,60,110,240);
 end if;
end;

GraphPlot
920i

Plots the graph previously set up using the GraphCreate, GraphInit, and GraphScale functions; The graph appears as a
histogram: each GraphPlot call places a bar or line at the right edge of the graph, moving values from previous calls to the left;
The width of the bar, in pixels, is specified by width parameter; The maximum width value is 8; Larger values are reduced to 8;
If the y_value is beyond the bounds set by GraphScale, the bar is plotted to the maximum or minimum value
Method Signature:
function GraphPlot (graphic_no : Integer; y_value : Real; width : Integer; color : Color_type) : SysCode;
Parameters:

[in] graphic_no Graphic number
[in] y_value Pixel height of histogram
[in] color Color type
[in] width Pixel width of moving bar

SysCode values returned:
SysInvalidRequest Graph not initialized
SysOK The function completed successfully

Example:
 result : Syscode;
 weight : real;

begin
 GetGross(1,Primary,weight);
 result := GraphPlot(1, weight, 1, Black);
end;

Methods Description

Table 5-21. Display Programming Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 85

GraphScale
920i

Sets the minimum and maximum x and y values for a graph; Currently, only the y values are used for the histogram displays;
x values are reserved for future use, but must be present in the call
Method Signature:
function GraphScale (graphic_no : Integer; x_min : Real; x_max : Real; y_min : Real; y_max : Real) : SysCode;
Parameters:

[in] graphic_no Graphic number
[in] x_min Minimum x-axis value
[in] x_max Maximum x-axis value)
[in] y_min Minimum y-axis value
[in] y_max Maximum y-axis value

SysCode values returned:
SysInvalidRequest Graph not initialized
SysOutOfRange A min value (x_min or y_min) is greater than its specified max value
SysOK The function completed successfully

Example:
GraphScale(1, 10.0, 50000.0, 0.0, 10000.0);

SetBargraphLevel
920i
1280

Sets the displayed level of bar-graph widget W to the percentage (0–100%) specified by Level
Method Signature:
function SetBargraphLevel (W : Integer; Level : Integer) : SysCode;
Parameters:

[in] W Bargraph widget number
[in] Level Bargraph widget level

SysCode values returned:
SysInvalidWidget The bargraph widget specified by W does not exist
SysOK The function completed successfully

SetLabelText
920i
882D
1280

Sets the text of label widget W to S
Method Signature:
function SetLabelText (W : Integer; S : String) : SysCode;
Parameters:

[in] W Label widget number
[in] S Label widget text

SysCode values returned:
SysInvalidWidget The label widget specified by W does not exist
SysOK The function completed successfully

NOTE: For the 882D only, this API is used to display a string (S) in one of the three text lines on the display.
Specify 1, 2 or 3 for the widget (W). Only the first 20 characters of the string will be displayed.

SetNumericValue
920i

Sets the value of numeric widget W to V
Method Signature:
function SetNumericValue (W : Integer; V : Real) : SysCode;
Parameters:

[in] W Numeric widget number
[in] V Numeric widget value

SysCode values returned:
SysInvalidWidget The numeric widget specified by W does not exist
SysOK The function completed successfully

Methods Description

Table 5-21. Display Programming Methods (Continued)

iRite Programmer Manual

86 Visit our website www.RiceLake.com

SetSymbolState
920i
1280

Sets the state of symbol widget W to S; The widget state determines the variant of the widget symbol displayed; All widgets have
at least two states (values 1 and 2); Some have three (3), see thee 1280 Technical Manual (PN 167659) and the 920i Technical
Manual (PN 67887) for descriptions of the symbol widget states
Method Signature:
function SetSymbolState (W : Integer; S : Integer) : SysCode;
Parameters:

[in] W Symbol widget number
[in] S Symbol widget state

SysCode values returned:
SysInvalidWidget The symbol widget specified by W does not exist
SysOK The function completed successfully

SetWidget
Visibility

920i
1280

Sets the visibility state of widget W to V
Method Signature:
function SetWidgetVisibility (W : Integer; V : OnOffType) : SysCode;
Parameters:

[in] W Widget number
[in] V Widget visibility

SysCode values returned:
SysInvalidWidget The widget specified by W does not exist
SysOK The function completed successfully

SetWidgetColor
1280

Sets the color of widget W to C, a set widget color uses HTML RGB style (Section 5.12.1 on page 88)
Method Signature:
function SetWidgetColor (W : Integer; C : String) : SysCode;
Parameters:

[in] W Widget number
[in] C Widget color

SysCode values returned:
SysInvalidWidget Requested widget could not be found
SysInvalidRequest No string provided for color parameter
SysOk The function completed successfully

SetSymbolColor
1280

Sets the color of symbol widget W to C; Color integer range is 1–16 (Table 5-22 on page 88)
Method Signature:
function SetSymbolColor (W : Integer; C : Integer) : SysCode;
Parameters:

[in] W Widget number
[in] C Symbol color, supports 16 colors (VGA)

SysCode values returned:
SysInvalidWidget Requested widget could not be found
SysInvalidRequest Invalid color
SysOk The function completed successfully

SetImageWidgetPath
1280

Displays image widget as a BMP or PNG file; File is accessed from:
• A micro SD card, stored in a folder called sdimage
• An HTTP or HTTPS link.

There are also a set of stock images on the 1280 firmware that can be accessed using the command “local://” followed by the
desired file name; The file index can be found in the 1280 Technical Manual (PN 167659) in the Firmware Images section, see
Section 5.12.2 on page 89 for image widgets
Method Signature:
function SetImageWidgetPath (W : Integer; C : String) : SysCode;
Parameters:

[in] W Widget image
[in] C Image path

SysCode values returned:
SysInvalidWidget Requested widget could not be found
SysOk The function completed successfully

Methods Description

Table 5-21. Display Programming Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 87

SetMenuBarColor
1280

Sets the color of the menu bar
Method Signature:
function SetMenuBarColor (C : String) : SysCode;
Parameters:

[in] C Color type, uses HTML RGB style
SysCode values returned:

SysInvalidRequest Invalid type
SysOk The function completed successfully

SetBGColor
1280

Sets the background color
Method Signature:
function SetBGColor (C : string; T : string) : SysCode;
Parameters:

[in] T Text color
[in] C Background color - name or HTML RGB Style

SysCode values returned:
SysInvalidRequest Invalid type
SysOk The function completed successfully

SetScaleSymbols
1280

Sets the scale’s symbols
Method Signature:
function SetScaleSymbols (C : String) : SysCode;
Parameters:

[in] C Color type (black and white only)
SysCode values returned:

SysInvalidRequest Invalid type
SysOk The function completed successfully

Methods Description

Table 5-21. Display Programming Methods (Continued)

iRite Programmer Manual

88 Visit our website www.RiceLake.com

5.12.1 Setting Widget Colors
SetWidgetColor(1, “#RRGGBB”);
Hexadecimal color values are supported in all browsers and is specified with: #RRGGBB.

• RR = hex value for red 00-FF (0–255)
• GG = hex value for green 00-FF (0–255)
• BB = hex value for blue 00-FF (0–255)

00-FF – specifies the intensity of the color.
Example: #0000FF is displayed as blue, because the blue component is set to its highest value (FF) and the
others are set to 00.

The list of colors for the symbols are shown in Table 5-22.
The following link explains web colors and supplies more information about the use of web colors.

https://en.wikipedia.org/wiki/Web_colors
This link accesses the vast number of hex colors that are supported by all browsers.

http://www.w3schools.com/colors/colors_names.asp

Value Color
1 black
2 dark red
3 red
4 pink
5 teal
6 green
7 bright green
8 turquoise
9 dark blue

10 violet
11 blue
12 lightgrey
13 darkgrey
14 darkyellow
15 yellow
16 white

Table 5-22. Symbol Colors

https://www.ricelake.com
https://en.wikipedia.org/wiki/Web_colors
http://www.w3schools.com/colors/colors_names.asp

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 89

5.12.2 Image Widget Icons

 NOTE: iRite does not have built-in functionality for iRite image numbers 1-7.png

Image Filename Image Filename Image Filename Image Filename Image Filename
1.png 15.png 29.png 43.png 57.png

2.png 16.png 30.png 44.png 58.png

3.png 17.png 31.png 45.png 59.png

4.png 18.png 32.png 46.png 60.png

5.png 19.png 33.png 47.png 61.png

6.png 20.png 34.png 48.png 62.png

7.png 21.png 35.png 49.png 63.png

8.png 22.png 36.png 50.png 64.png

9.png 23.png 37.png 51.png 65.png

10.png 24.png 38.png 52.png 66.png

11.png 25.png 39.png 53.png 67.png

12.png 26.png 40.png 54.png 68.png

13.png 27.png 41.png 55.png

14.png 28.png 42.png 56.png

Table 5-23. Image Widgets

iRite Programmer Manual

90 Visit our website www.RiceLake.com

5.12.3 Display Charting
Methods Description

ChartClear
1280

Clears the chart of data
Method Signature:
function ChartClear(widget_no : Integer) : SysCode;
Parameters

[in] widget_no Chart widget number
SysCode values returned:

SysOK The function completed successfully
SysInvalidWidget Requested widget could not be found

ChartInit
1280

Call this API to initialize a non-static chart and set color values; Non-static charts allow:
• Added points once rendered (ChartInserToExisting)
• Animation (ChartSetAnimation)
• Up to 200 data points

Method Signature:
Function ChartInit (widget_no : Integer; fillColor : String; lineColor : String; pointColor : String; maxPoints : Integer) : SysCode;
Parameters:

[in] widget_no Chart widget number
[in] fillColor Html color for the fill area of the chart
[in] lineColor Html color for the line between points, or the outer edge of the bar
[in] pointColor Html color for data points on the line chart. Value is ignored on a bar chart
[in] maxPoints Max number of points on the chart; The value is capped at 200 points; If the number of

inserted points exceeds this value, the earliest points on the chart are removed
SysCode values returned:

SysOK The function completed successfully
ChartInitStatic

1280
Initializes a static chart; All data points shown in a static chart must be added (ChartPlot) prior to rendering (ChartRender); Static
charts do not add data points after rendering nor support animation; Support up to 8000 data points
Method Signature:
function ChartInitStatic (widget_no : Integer; fillColor : String; lineColor : String; pointColor : String; maxPoints : Integer) :
SysCode;
Parameters:

[in] widget_no Chart widget number
[in] fillColor Html color for the fill area of the chart
[in] lineColor Html color for the line between points, or the outer edge of the bar
[in] pointColor Html color for data points on the line chart; Value is ignored on a bar chart
[in] maxPoints Max number of points on the chart; The value is capped at 8000 points; If the number of

inserted points exceeds this value, the earliest points on the chart are removed
SysCode values returned:

SysOK The function completed successfully
ChartPlot

1280
This API is called repeatedly until all data points are plotted prior to rendering the chart to the display
Method Signature:
function ChartPlot (widget_no : Integer; label : String; value : real) : SysCode;
Parameters:

[in] widget_no Chart widget number
[in] label Label or name of the data point
[in] value Value of the data point

SysCode values returned:
SysOK The function completed successfully

ChartSetAnimation
1280

If this is enabled, the chart will animate when rendered and updated (Non-static charts only)
Method Signature:
function ChartSetAnimation (widget_no : Integer; enabled : BooleanType) : SysCode;
Parameters:

[in] widget_no Chart widget number
SysCode values returned:

SysOK The function completed successfully

Table 5-24. Display Charting Methods

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 91

5.13 Database Operation

ChartRender
1280

Call this API to cause the chart to render to the display
Method Signature:
function ChartRender (widget_no : Integer) : SysCode;
Parameters:

[in] widget_no Chart widget number
SysCode values returned:

SysOK The function completed successfully
ChartInsertTo
Existing

1280

Call this API to insert a new data point into a previously rendered non-static chart; If the new point exceeds the max number of
points set in ChartInit, the oldest or leftmost point on the chart is removed while the new point is added
Method Signature:
function ChartInsertToExisting(widget_no : Integer; label : String; value : real) : SysCode;
Parameters:

[in] widget_no Chart widget number
[in] label Label or name of the data point
[in] value Value of the data point

SysCode values returned:
SysOK The function completed successfully

ChartSetPointSize
1280

Sets the point size of the dots in the chart
Method Signature:
Function ChartSetPointSize(widget_no : Integer; size : Integer) : Syscode;
Parameters

[in] widget_no Chart widget number
[in] size Point size of the dots in the chart

SysCode values returned:
SysOK The function completed successfully
SysInvalidRequest Invalid point size
SysInvalidWidget Requested widget could not be found

Methods Description
<DB>.Add

920i
880

882D
1280

Adds a record to the referenced database; Previous sort operation may change
Method Signature:
function <DB>.Add : SysCode;
SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found
SysDatabaseFull There is no space in the specified database for this record
SysOK The function completed successfully

<DB>.Clear
920i
880

882D
1280

Clears all records from the referenced database
Method Signature:
function <DB>.Clear : SysCode;
SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found
SysOK The function completed successfully

<DB>.Delete
920i
880

882D
1280

Deletes the current record from the referenced database; Previous sort operation may change
Method Signature:
function <DB>.Delete : SysCode;
SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysOK The function completed successfully

Table 5-25. Database Communication Methods

Methods Description

Table 5-24. Display Charting Methods (Continued)

iRite Programmer Manual

92 Visit our website www.RiceLake.com

The following <DB.Find> functions allow a database to be searched; Column I is an alias for the field name, generated by the Generate iRev
import file operation; The value to be matched is set in the working database record, in the field corresponding to column I, before a call to
<DB>.FindFirst or <DB>.FindLast
<DB>.FindFirst

920i
880

882D
1280

Finds the first record in the referenced database that matches the contents of the Working Database Record column I
Method Signature:
function <DB>.FindFirst (I : Integer) : SysCode;
SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysNoSuchColumn The column specified by I does not exist
SysOK The function completed successfully

<DB>.FindLast
920i
880

882D
1280

Finds the last record in the referenced database that matches the contents of the Working Database Record column I
Method Signature:
function <DB>.FindLast (I : Integer) : SysCode;
SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysNoSuchColumn The column specified by I does not exist
SysOK The function completed successfully

<DB>.FindNext
920i
880

882D
1280

Finds the next record in the referenced database that matches the criteria of a previous FindFirst or FindLast operation
NOTE: GetNext only works with GetFirst. This only works for the 1280.
NOTE: FindNext only works with FindFirst. This does not work for the 920i.
Method Signature:
function <DB>.FindNext : SysCode;
SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysOK The function completed successfully

<DB>.FindPrev
920i
880

882D
1280

Finds the previous record in the referenced database that matches the criteria of a previous FindFirst or FindLast operation
Method Signature:
function <DB>.FindLast : SysCode;
SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysOK The function completed successfully

<DB>.GetFirst
920i
880

882D
1280

Retrieves the first logical record from the referenced database
Method Signature:
function <DB>.GetFirst : SysCode;
SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysOK The function completed successfully

<DB>.GetLast
920i
880

882D
1280

Retrieves the last logical record from the referenced database
Method Signature:
function <DB>.GetLast : SysCode;
SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysOK The function completed successfully

Methods Description

Table 5-25. Database Communication Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 93

<DB>.GetNext
920i
880

882D
1280

Retrieves the next logical record from the referenced database
NOTE: GetNext only works with GetFirst. This only works for the 1280.
NOTE: FindNext only works with FindFirst. This does not work for the 920i.
Method Signature:
function <DB>.GetNext : SysCode;
SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysOK The function completed successfully

<DB>.GetPrev
920i
880

882D
1280

Retrieves the previous logical record from the referenced database
Method Signature:
function <DB>.GetPrev : SysCode;
SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysOK The function completed successfully

<DB>.Sort
920i
880

882D
1280

Sorts database <DB> into ascending order based on the contents of column I; The sort table supports a maximum of 30 000
elements; Databases with more than 30 000 records cannot be sorted; The 880 has a maximum sort of 15000 elements
Method Signature:
function <DB>.Sort (I : Integer) : SysCode;
Parameters:

[in] I Column number to sort by
SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysOK The function completed successfully

<DB>.Update
920i
880

882D
1280

Updates the current record in the referenced database with the contents of the Working Database Record; Using this function
invalidates any previous sort operation
Method Signature:
function <DB>.Update : SysCode;
SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysOK The function completed successfully

Methods Description

Table 5-25. Database Communication Methods (Continued)

iRite Programmer Manual

94 Visit our website www.RiceLake.com

5.13.1 iRite SQL Feature
Version 1.05 of the 1280 indicator, includes an SQL query capability, added to the iRite language. This provides a robust query
mechanism for iRite programs. It includes the ability to:

• specify multiple sort criteria
• specify multiple search criteria
• the ability to search for ranges rather than a single value
• join tables to pull in data from multiple tables into a single result set

In order to maintain compatibility with the existing DB.* APIs and DB.DATA EDP commands, all tables must be defined with
DB.SCHEMA and DB.ALIAS configuration. The 1280 core software will be responsible for creating tables based on this
configuration. The following SQL capabilities will not be supported:

• CREATE TABLE
• DROP TABLE
• ALTER TABLE

DB Tables
Current design has one sqlite database for each configured schema. Each database has one table. This feature modifies that to
one iRite database. Each configured schema will be a table in the database. When updating an 1280 from Version 1.04 to
Version 1.05, a program to transfer data from existing databases into the new iRite database needs to be run.

DB iRite APIs
APIs have been created to allow the use of SQL queries from an iRite user program. Basic use is as follows:

• Construct the SQL statement and call the DBExec; this API will return an identifier for the query result set
• Retrieve data from the result set using the DBColumnxxx API; there will be APIs for the iRite types: Integer, Real, String,

and DateTime
• Step through the result set with the DBNext API
• After all results have been retrieved, call DBFinalize to free up the result set resources

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 95

Methods Description
DBExec

1280
Execute a SQL statement; queries which return data have an active result set for which an identifier is returned; this identifier is
used on subsequent calls to retrieve data from the result set; the result set resources must be freed by calling DBFinalize when it
is no longer needed; there is a limit of 10 concurrent active result sets
Method Signature:
function DBExec (S : String; var R : Integer) : SysCode;
Parameters:

[in] S SQL query
[out] R Result set identifier, 0 if there is no result set from the query

SysCode values returned:
SysInvalidRequest Too many active result sets
SysPermissionDenied An attempt was made to perform a restricted actions (create, alter or drop table)
SysRequestFailed SQL query could not be executed
SysOk The function completed successfully

DBNext
1280

Advance to the next row in the result set
Method Signature:
function DBNext (R : Integer) : SysCode;
Parameters:

[in] R Result set identifier
SysCode values returned:

SysInvalidRequest Invalid result set identifier
SysNoSuchRecord There are no more records in the result set
SysRequestFailed Advance could not be completed
SysOk The function completed successfully

DBColumnInt
1280

Retrieve value of a column from the current row of the result set as an integer value
Method Signature:
function DBColumnInt (R : Integer; C : Integer; var V : Integer) : SysCode;
Parameters:

[in] R Result set identifier
[in] C Column number
[out] V Value of the requested column in the result set

SysCode values returned:
SysInvalidRequest Invalid result set identifier
SysNoSuchColumn Invalid column number
SysRequestFailed Incorrect column type
SysOk The function completed successfully

DBColumnReal
1280

Retrieve value of a column from the current row of the result set as a real value
Method Signature:
function DBColumnInt (R : Integer; C : Integer; var V : Real) : SysCode;
Parameters:

[in] R Result set identifier
[in] C Column number
[out] V Value of the requested column in the result set

SysCode values returned:
SysInvalidRequest Invalid result set identifier
SysNoSuchColumn Invalid column number
SysRequestFailed Incorrect column type
SysOk The function completed successfully

Table 5-26. iRite SQL Feature Methods

iRite Programmer Manual

96 Visit our website www.RiceLake.com

DBColumnString
1280

Retrieve value of a column from the current row of the result set as a string value
Method Signature:
function DBColumnInt (R : Integer; C : Integer; var V : String) : SysCode;
Parameters:

[in] R Result set identifier
[in] C Column number
[out] V Value of the requested column in the result set

SysCode values returned:
SysInvalidRequest Invalid result set identifier
SysNoSuchColumn Invalid column number
SysRequestFailed Incorrect column type
SysOk The function completed successfully

DBColumnDT
1280

Retrieve value of a column from the current row of the result set as a DateTime value
Method Signature:
function DBColumnDT (R : Integer; C : Integer; var V : DateTime) : SysCode;
Parameters:

[in] R Result set identifier
[in] C Column number
[out] V Value of the requested column in the result set

SysCode values returned:
SysInvalidRequest Invalid result set identifier
SysNoSuchColumn Invalid column number
SysRequestFailed Incorrect column type
SysOk The function completed successfully

DBFinalize
1280

Free up result set resources. DBFinalize must be called when the result set is no longer needed; There is a limit to how many
active result sets are allowed
Method Signature:
function DBFinalize (R : Integer) : SysCode;
Parameters:

[in] R Result set identifier
SysCode values returned:

SysInvalidRequest Invalid result set identifier
SysOk The function completed successfully

DBErrMsg
1280

Get a description of the error from the last database call; If the most recent database call was successful the message returned is
undefined
Method Signature:
function DBErrMsg () : String;

DTToString
1280

Return String representation of the encoded date time d; This is intended to be used to add a DateTime value to an SQL query string
Method Signature:
function DTToString (D : DateTime) : SysCode;
Parameters:

[in] D Date Time value to be formatted

Methods Description

Table 5-26. iRite SQL Feature Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 97

5.14 Timer Control
Thirty-two timers, configurable as either continuous or one-shot timers, can be used to generate events at some time in the
future. The shortest interval for which a timer can be set is 10 ms.

Methods Description
ResetTimer

920i
820i
880

882D
1280

Resets the value of timer T (1–32) by stopping the timer, setting the timer mode to TimerOneShot, and setting the timer time-out to 0
Method Signature:
function ResetTimer (T : Integer) : Syscode;
Parameters:

[in] T Timer number
SysCode values returned:

SysInvalidTimer The timer specified by T is not a valid timer
SysOK The function completed successfully

ResumeTimer
920i
820i
880

882D
1280

Restarts a stopped timer T (1–32) from its stopped value
Method Signature:
function ResumeTimer (T : Integer) : Syscode;
Parameters:

[in] T Timer number
SysCode values returned:

SysInvalidTimer The timer specified by T is not a valid timer
SysOK The function completed successfully

SetTimer
920i
820i
880

882D
1280

Sets the time-out value of timer T (1–32); Timer values are specified in 0.01-second intervals (1= 10 ms, 100 = 1 second);
For one-shot timers, the SetTimer function must be called again to restart the timer once it has expired
Method Signature:
function SetTimer (T : Integer ; V : Integer) : Syscode;
Parameters:

[in] T Timer number
[in] V Timer value

SysCode values returned:
SysInvalidRequest The specified time-out value is less than 0
SysInvalidTimer The timer specified by T is not a valid timer
SysOK The function completed successfully

SetTimerDigout
920i
820i
880

882D
1280

Used to provide precise control of state changes for timers using TimerDigoutOff or TimerDigoutOn modes; The state of the
specified digital output (slot S, bit D) is changed when timer T (1–32) expires
Method Signature:
function SetTimerDigOut (T : Integer ; S : Integer ; D: Integer) : Syscode;
Parameters:

[in] T Timer number
[in] S Digital I/O slot number
[in] D Digital I/O bit number

SysCode values returned:
SysInvalidRequest The slot or bit number specified is not a valid digital output
SysInvalidTimer The timer specified by T a not valid timer
SysOK The function completed successfully

Example:
SetTimer(1,100); –Set value of Timer1 to 100 (1 second)
SetTimerMode(1,TimerDigoutOn); –Set timer mode to turn on the digital output
SetTimerDigout(1,0,1); –Set the digital output to control (slot 0, bit 1)
StartTimer(1); –Start timer

Table 5-27. Timer Control Methods

iRite Programmer Manual

98 Visit our website www.RiceLake.com

SetTimerMode
920i
820i
880

882D
1280

Sets the mode value, M, of timer T (1–32); This function, normally included in a program startup handler, only needs to be called
once for each timer unless the timer mode is changed
Method Signature:
function SetTimerMode (T : Integer ; M : TimerMode) : Syscode;
Parameters:

[in] T Timer number
[in] M Timer mode

TimerMode values sent:
TimerOneShot Timer mode is set to one-shot
TimerContinuous Timer mode is set to continuous
TimerDigOutOff One-shot timer sets a digital output off when the timer expires
TimerDigOutOn One-shot timer sets a digital output on when the timer expires

SysCode values returned:
SysInvalidTimer The timer specified by T is not a valid timer
SysInvalidMode The timer mode specified by M is not a valid timer mode
SysOK The function completed successfully

StartTimer
920i
820i
880

882D
1280

Starts timer T (1–32); For one-shot timers, this function must be called each time the timer is used; Continuous timers are started
only once; They do not require another call to StartTimer unless stopped by a call to the StopTimer function; If a timer has been
set with a time-out value of 0, StartTimer will not start the timer but will return SysOk
Method Signature:
function StartTimer (T : Integer) : Syscode;
Parameters:

[in] T Timer number
SysCode values returned:

SysInvalidTimer The timer specified by T is not a valid timer
SysOK The function completed successfully

StopTimer
920i
820i
880

882D
1280

Stops timer T (1–32)
Method Signature:
function StopTimer (T : Integer) : Syscode;
Parameters:

[in] T Timer number
SysCode values returned:

SysInvalidTimer The timer specified by T is not a valid timer
SysOK The function completed successfully

Methods Description

Table 5-27. Timer Control Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 99

5.15 Mathematical Operations
Methods Description

Abs
920i
820i
880

882D
1280

Returns the absolute value of x
Method Signature:
function Abs (x : Real) : Real;

ATan
920i
820i
880

882D
1280

Returns a value between –p/2 and p/2, representing the arctangent of x in radians
Method Signature:
function Atan (x : Real) : Real;

Ceil
920i
820i
880

882D
1280

Returns the smallest integer greater than or equal to x
Method Signature:
function Ceil (x : Real) : Integer;

Cos
920i
820i
880

882D
1280

Returns the cosine of x. x must be specified in radians
Method Signature:
function Cos (x : Real) : Real;

Exp
920i
820i
880

882D
1280

Returns the value of ex

Method Signature:
function Exp (x : Real) : Real;

Log
920i
820i
880

882D
1280

Returns the value of loge(x)

Method Signature:
function Log (x : Real) : Real;

Log10
920i
820i
880

882D
1280

Returns the value of log10(x)

Method Signature:
function Log10 (x : Real) : Real;

Sign
920i
820i
880

882D
1280

Returns the sign of the numeric operand; If x < 0, the function returns a value of -1; Otherwise, the value returned is 1
Method Signature:
function Sign (x : Real) : Integer;

Sin
920i
820i
880

882D
1280

Returns the sine of x. x must be specified in radians
Method Signature:
function Sin (x : Real) : Real;

Table 5-28. Mathematical Operation Methods

iRite Programmer Manual

100 Visit our website www.RiceLake.com

5.16 Bit-Wise Operation

Sqrt
920i
820i
880

882D
1280

Returns the square root of x
Method Signature:
function Sqrt (x : Real) : Real;

Tan
920i
820i
880

882D
1280

Returns the tangent of x. x must be specified in radians
Method Signature:
function Tan (x : Real) : Real;

Methods Description
BitAnd

920i
820i
880

882D
1280

Returns the bit-wise AND result of X and Y
Method Signature:
function BitAnd (X : Integer; Y : Integer) : Integer;

BitNot
920i
820i
880

882D
1280

Returns the bit-wise NOT result of X
Method Signature:
function BitNOT (X : Integer) : Integer;

BitOr
920i
820i
880

882D
1280

Returns the bit-wise OR result of X and Y
Method Signature:
function BitOr (X : Integer; Y : Integer) : Integer;

BitXor
920i
820i
880

882D
1280

Returns the bit-wise exclusive OR (XOR) result of X and Y
Method Signature:
function BitXor (X : Integer; Y : Integer) : Integer;

Table 5-29. Bit-Wise Operation Methods

Methods Description

Table 5-28. Mathematical Operation Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 101

5.17 String Operations
Methods Description

Asc
920i
820i
880

882D
1280

Returns the ASCII value of the first character of string S; If S is an empty string, the value returned is 0
Method Signature:
function Asc (S : String) : Integer;

Chr$
920i
820i
880

882D
1280

Returns a one-character string containing the ASCII character represented by I
Method Signature:
function Chr$ (I : Integer) : String;
Parameters:

[in] I The integer value to be converted
Value returned:
 A string containing the ASCII character of the integer value

Hex$
920i
820i
880

882D
1280

Returns an eight-character hexadecimal string equivalent to I (Range is -2147483647–2147483647)
Method Signature:
function Hex$ (I : Integer) : String;
Parameters:

[in] I The integer value to be converted
Value returned:
 The string representation of the hexadecimal conversion of the integer value

LCase$
920i
820i
880

882D
1280

Returns the string S with all upper-case letters converted to lower case
Method Signature:
function LCase$ (S : String) : String;
Parameters:

[in] S The string to be converted to all lower case
Value returned:
 The converted string

Left$
920i
820i
880

882D
1280

Returns a string containing the leftmost I characters of string S; If I is greater than the length of S, the function returns a copy of S
Method Signature:
function Left$ (S : String; I : Integer) : String;
Parameters:

[in] S The source string
[in] I The number of characters to return in the result

Value returned:
A string containing the requested number of leftmost characters of the provided string

Len
920i
820i
880

882D
1280

Returns the length (number of characters) of string S
Method Signature:
function Len (S : String) : Integer;
Parameters:

[in] S The string
Value returned:
An Integer representing the number of characters in the provided string

Table 5-30. String Operation Methods

iRite Programmer Manual

102 Visit our website www.RiceLake.com

Mid$
920i
820i
880

882D
1280

Returns a number of characters (specified by length) from string s, beginning with the character specified by start; f start is
greater than the string length, the result is an empty string; If start + length is greater than the length of S, the returned value
contains the characters from start through the end of S
Method Signature:
function Mid$ (S : String; start : Integer; length : Integer) : String;
Parameters:

[in] S The source string
[in] start Character position to start from
[in] length The number of characters to return in the result

Value returned:
A string containing the requested portion of the provided string

Oct$
920i
820i
880

882D
1280

Returns an 11-character octal string equivalent to I (range is -2147483647–2147483647)
Method Signature:
function Oct$ (I : Integer) : String;
Parameters:

[in] I The integer value to be converted
Value returned:
The string representation of the octal conversion of the integer value

Right$
920i
820i
880

882D
1280

Returns a string containing the rightmost I characters of string S; If I is greater than the length of S, the function returns a copy of S
Method Signature:
function Right$ (S : String; I : Integer) : String;
Parameters:

[in] S The source string.
[in] I The number of characters to return in the result.

Value returned:
A string containing the requested number of rightmost characters of the provided string

Space$
920i
820i
880

882D
1280

Returns a string containing N spaces
Method Signature:
function Space$ (N : Integer) : String;
Parameters:

[in] N The number of spaces to be contained in the string
Value returned:
A string containing the requested number of spaces

UCase$
920i
820i
880

882D
1280

Returns the string S with all lower-case letters converted to upper case
Method Signature:
function UCase$ (S : String) : String;
Parameters:

[in] S The string to be converted to all upper case
Value returned:
The converted string

Methods Description

Table 5-30. String Operation Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 103

5.18 Data Conversion
Command Description

IntegerToString
920i
820i
880

882D
1280

Returns a string representation of the integer I with a minimum length of W; If W is less than zero, zero is used as the minimum
length; If W is greater than 100, 100 is used as the minimum length
Method Signature:
function IntegerToString (I : Integer; W : Integer) : String;
Parameters:

[in] I The integer value to be converted
[in] W The minimum length of the string

RealToString
920i
820i
880

882D
1280

Returns a string representation of the real number R with a minimum length of W, with P digits to the right of the decimal point;
If W is less than zero, zero is used as the minimum length; If W is greater than 100, 100 is used as the minimum length;
If P is less than zero, zero is used as the precision; If P is greater than 20, 20 is used
Method Signature:
function RealToString (R : Real; W : Integer; P: Integer) : String;
Parameters:

[in] R Real variable to convert to a string
[in] W The minimum length of the string
[in] P Precision or number of places to the right of the decimal place to display

StringToInteger
920i
820i
880

882D
1280

Returns the integer equivalent of the numeric string S; If S is not a valid string, function returns the value 0
Method Signature:
function StringToInteger (S : String) : Integer;
Parameter:

[in] S String to convert to an integer
StringToReal

920i
820i
880

882D
1280

Returns the real number equivalent of the numeric string S; If S is not a valid string, the function returns the value 0.0
Method Signature:
function StringToReal (S : String) : Real;
Parameter:

[in] S String to convert to a real value
SysCodeToString

920i
880

882D
1280

Returns a string representation of the SysCode type, see Section 4.0 on page 35 for all the possible types that can be returned
Method Signature:
function SysCodeToString(Code : SysCode): String;
Parameter:

[in] Code A value of type SysCode to convert to a value of type String
Value Returned:
The String, see Section 4.0 on page 35 for possible values

Example:
result : Syscode;
...
result := SetFileTermination(FileCRLF);
WriteLn(1, SysCodeToString(result));

Table 5-31. Data Conversion Commands

iRite Programmer Manual

104 Visit our website www.RiceLake.com

5.19 High Precision

5.20 File I/O
A user program may have only one file open at a time. Once opened, any further file accesses will be to that file.

Command Description
DecodeExtFloat

920i
820i
1280

A five-byte IEEE-1594 extended floating point number, expressed as an array or bytes, is converted to a standard 4-byte floating
point real; NaN and infinity are processed; If a number is too small to convert to 4-byte precision, zero is returned; If a number is
too large to convert to 4-byte precision, infinity is returned
Method Signature:
function DecodeExtFloat(weight : ExtFloatArray) : real;

EncodeExtFloat
920i
820i
1280

Converts a 4-byte floating point real to a 5-byte IEEE-1394 extended floating point number in the form of an array of five bytes
Method Signature:
function EncodeExtFloat(weight : real) : ExtFloatArray;

Table 5-32. High Precision Commands

Methods Description
USBFileOpen

920i
1280

Read a file from a flash drive; opening a file as Read positions the internal pointer at the start of the file; opening a file as Create or
Append positions the internal pointer at the end of the file; Any attempt to read a file opened as Create or Append will return
SysEndOfFile
Method Signature:
function (filename : string; mode : FileAccessMode) : Syscode;
Parameters:

[in] filename The indicator will look in a folder named whatever the indicator's UID is set for (defaulted
to 1) for the filename sent as the parameter. Use the entire path (without the drive)

[in] mode How the file is to be opened: FileCreate, FileAppend, or FileRead. See FileAccessMode in
Section 4.0 on page 35

SysCode values returned:
SysOk
SysNoFileSystemFound
SysPortBusy
SysFileNotFound
SysDirectoryNotFound
SysFileExists
SysInvalidFileFormat
SysBadFilename (over 8 characters)
SysEndOfFile

Examples:
USBFileOpen(Testing.txt, FileCreate); –Creates a new empty file called Testing.txt
USBFileOpen(Testing.txt,FileAppend); –Adds to a currently stored file called Testing.txt
USBFileOpen(test,FileRead); –Reads from a currently stored file

FileOpen
1280

Similar to USBFileOpen, except 1280 specific; Opens a file on the USB drive, SD card or FTP Server; Has an additional parameter
to specify the device; Refer to the USBFileOpen description for additional information
Method Signature:
function FileOpen (filename : string; device : FileDevice; mode : FileAccessMode) : SysCode;
SysCode values returned:

SysOk
SysFileOpen
SysRequestFailed

Examples:
FileOpen(“Testing.txt”, SDCard, FileCreate); –Creates a new empty file called Testing.txt on the SD card
FileOpen(“Testing.txt”,SDCard,FileAppend); –Adds to a currently stored file called Testing.txt on the SD card
FileOpen(“Testing.txt”,SDCard,FileRead); –Reads from a currently stored file on the SD card

Table 5-33. File I/O Commands

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 105

USBFileClose
920i
1280

Used to close a currently opened file (USB) (see USBFileOpen); A file must be closed before device removal or the file contents may be
corrupted
Method Signature:
function USBFileClose : SysCode;
Parameters: None
SysCode values returned:

SysOk
SysNoFileSystemFound
SysMediaChanged
SysNoFileOpen

Example:
USBFileClose;

FileClose
1280

Similar to USBFileClose, except 1280 specific; Used to close a currently opened file, see FileOpen; a file must be closed before
device removal or the file contents may be corrupted; Refer to the USBFileClose description for additional information
Method Signature:
function FileClose : Syscode;
SysCode values returned:

SysOk
SysNoFileOpen

Example:
FileClose;

USBFileDelete
920i
1280

Deletes a file saved on the USB drive; To overwrite an existing file, the user program should first delete the file, then reopen it with
Create access
Method Signature:
function USBFileDelete (filename : string) : SysCode;
Parameters:

Filename -the indicator will look in a folder named whatever the indicator's UID is set for (defaulted to 1) for the filename sent
as the parameter

SysCode values returned:
SysOk
SysNoFileSystemFound
SysPortBusy
SysFileNotFound
SysDirectoryNotFound
SysBadfilename

Example:
USBFileDelete(“Testing.txt”);

FileDelete
1280

Similar to USBFileDelete, except 1280 specific; Deletes a file saved on the USB drive, SD card or FTP server; To overwrite an
existing file, the user program should first delete the file, then reopen it with Create access; Has an additional parameter to
specify the device; Refer to the USBFileDelete description for additional information
Method Signature:
function FileDelete (filename : string; device : FileDevice) : Syscode;
SysCode values returned:

SysOk
SysFileOpen
SysFileNotFound

Example:
FileDelete(“Testing.txt”, FTP);
FileDelete(“Testing.txt”, USB);

Methods Description

Table 5-33. File I/O Commands (Continued)

iRite Programmer Manual

106 Visit our website www.RiceLake.com

USBFileExists
920i
1280

Checks to see if a file exists on the USB drive
Method Signature:
function USBFileExists (filename : string) : SysCode;
Parameters:

Filename - the indicator will look in a folder named whatever the indicator's UID is set for (defaulted to 1) for the filename sent
as the parameter

SysCode values returned:
SysOk
SysNoFileSystemFound
SysPortBusy
SysInvalidMode
SysBadfilename

Example:
USBFileExists(“Testing.txt”);

FileExists
1280

Similar to USBFileExists, except 1280 specific; Checks to see if a file exists on the USB drive, SD card or FTP server; Has an
additional parameter to specify the device; Refer to the USBFileExists description for additional information
Method Signature:
function FileExists (filename : string; device : FileDevice) : SysCode;
SysCode values returned:

SysOk
SysFileOpen
SysFileNotFound

Example:
FileExists(“Testing.txt”, SDCard);
FileExists(“Testing.txt”, FTP);

ReadLn
920i
1280

Read a string from whatever file is currently open; The string will be placed in a string-type-variable that must be defined
Method Signature:
function ReadLn (VAR data : string) : SysCode;
Parameters:

Data: this is the string type variable that the data will be placed in to display or print or otherwise be used by the program;
It reads one line at a time and the entire line is in this string

SysCode values returned:
SysOk
SysNoFileOpen
SysMediaChanged
SysNoFileSystemFound
SysEndOfFile

Example:
Result := ReadLn(sTempString); –Reads a line of data from whatever file is open
while Result <> SysEndOfFile –Loops, looking at the return code until the end
loop
 Result := ReadLn(sTempString);
 WriteLn(3, sTempString); –Prints each line read out Port 3
end loop;

WriteLn
920i

These APIs both write out a port (and are not new to USB but can be used by the USB); If writing to the USB drive it will append
the string to the end of the currently open file; The only difference between the two is the WriteLn sends a carriage return/line feed
at the end, and Write does not
Method Signature:
procedure Write (Port : Integer; data : string);
Parameters:

Port - Whichever port on the indicator the data will be sent out of. Port 2 is used for USB
Example:
see ReadLn.

Methods Description

Table 5-33. File I/O Commands (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 107

FileWrite
1280

Appends a string to the currently open file
Method Signature:
function FileWrite (S : String) : SysCode;
Parameters:

S - The string to append to the file
SysCode values returned:

SysOk
SysNoFileOpen
SysNoFileSystemFound

Example:
FileWrite(“line of data”);

FileWriteLn
1280

Appends a string to the currently open file; Sends FileTermination (SetFileTermin) at the end
Method Signature:
function FileWriteLn (S : String) : SysCode;
Parameters:

S - The string to append to the file
SysCode values returned:

SysOk
SysNoFileOpen
SysNoFileSystemFound

Example:
FileWriteLn(“line of data”);

GetUSBStatus
920i

Returns the most recent status report for the USB port; This is useful for validating a Write or WriteLn
Method Signature:
function GetUSBStatus : SysCode;
SysCode values returned:

SysOk
SysInvalidRequest

Example:
Result := GetUSBStatus;

GetUSBAssignment
920i

Returns the USBDeviceType currently in use
Method Signature:
function GetUSBAssignment : USBDeviceType;
Example:
dDevice := GetUSBAssignment; –verify the assignment
if dDevice = USBFileSystem then
 WriteLn(3,"USBFlashDrive");
elsif dDevice = USBHostPC then
 WriteLn(OutPort,"USBHostPC");
elsif dDevice = USBPrinter2 then
 WriteLn(OutPort,"USBPrinter2");
elsif dDevice = USBPrinter1 then
 WriteLn(OutPort,"USBPrinter1");
elsif dDevice = USBKeyboard then
 WriteLn(OutPort,"USBKeyboard");
else
 WriteLn(OutPort,"Device Unknown");
end if;

Methods Description

Table 5-33. File I/O Commands (Continued)

iRite Programmer Manual

108 Visit our website www.RiceLake.com

SetUSBAssignment
920i

Selects a secondary device for current use, capturing the current device as primary
Method Signature:
function SetUSBAssignment (device : USBDeviceType) : SysCode
Parameters:
device (see Section 4.0 on page 35)
SysCode values returned:

SysOk
SysDeviceNotFound
SysPortBusy

Example:
SetUSBAssignment(USBHostPC);

ReleaseUSB
Assignment

920i

Returns the current USB device to the captured primary device
Method Signature:
function ReleaseUSBAssignment : SysCode
SysCode values returned:

SysOk
SysDeviceNotFound
SysPortBusy

Example:
ReleaseUSBAssignment;

IsUSBDevicePresent
920i

Checks to see if the device passed is there or not
Method Signature:
function IsUSBDevicePresent (device : USBDeviceType) : SysCode;
Parameters:
device (see Section 4.0 on page 35)
SysCode values returned:

SysOk
SysDeviceNotFound

Example:
Result := IsUSBDevicePresent(USBFileSystem);
if Result <> SysOk then
 WriteLn(OutPort,"Flash Drive Not Found");
else
 WriteLn(OutPort,"SysOK");
end if;

SetFileTermin
920i
1280

This determines what is appended at the end of each line
Termin - see Section 4.0 on page 35 for FileLineTermination type options
Method Signature:
function SetFileTermin (termin : FileLineTermination) : SysCode;
SysCode values returned:

SysOk
Example:
SetFileTermin(FileCRLF);

Methods Description

Table 5-33. File I/O Commands (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 109

5.21 882D Belt Scale Data Acquisition
This section lists additional APIs used specifically to program the 882D integrator.

 NOTE: General APIs for the 882D are referenced elsewhere throughout this chapter (Section 5.0 on page 39).

DBLoad
920i

Opens a file in Read mode using the name of the database and the Unit ID and calls the core to process it as a database file;
The file is closed when done
Method Signature:
function DBLoad (db name : String) : SysCode;
SysCode values returned:

SysOk
SysNoSuchDatabase
SysNoFileSystemFound
SysFileAlreadyOpen
SysFileNotFound
SysDirectoryNotFound
SysInvalidFileFormat
SysPortBusy

Example:
if DBLoad("Product") = Sysok then
 DisplayStatus("Product Database Loaded into 920i")
end if;

DBSave
920i

Opens a file in Create mode using the name of the database and the Unit ID and calls the core to process it as a database file;
File is closed when done
Example: if the Unit ID in the 920i was 5, it would store a file to E:/5/Product.txt (if the computer recognized the thumb drive as
drive E).
Method Signature:
function DBSave (db name : String) SysCode;
SysCode values returned:

SysOk
SysNoSuchDatabase
SysNoFileSystemFound
SysFileAlreadyOpen
SysFileNotFound
SysDirectoryNotFound
SysFileExists
SysPortBusy

Example:
if DBSave("Product") = Sysok then
 DisplayStatus("Product Database Saved to thumb drive")
end if;

Methods Description
GetMaxCapacity

882D
Sets C to the configured max capacity for scale S
Method Signature:
function GetMaxCapacity (S : Integer; VAR C : Real) : SysCode;
Parameters:

[in] S Scale number
[out] C Scale capacity

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysOK The function completed successfully

Table 5-34. Scale Operation Methods

Methods Description

Table 5-33. File I/O Commands (Continued)

iRite Programmer Manual

110 Visit our website www.RiceLake.com

GetTotal
882D

Sets V to the current value for totalizer T, scale S
Method Signature:
function GetTotal (S : Integer; T : Integer; V : Real) : SysCode;
Parameters:

[in] S Scale number
[in] T Totalizer number (0=master totalizer, 1=totalizer 1, 2=totalizer 2)
[out] V Current belt totalizer value

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidTotalizer The totalizer specified by T does not exist
SysOK The function completed successfully

ClearTotal
882D

Sets the value for totalizer T, scale S to zero
Method Signature:
function ResetBeltResetTotal (S : Integer; T : Integer) : SysCode;
Parameters:

[in] S Scale number
[in] T Totalizer number (1=totalizer 1, 2=totalizer 2)

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysInvalidTotalizer The totalizer specified by T does not exist or the master totalizer (0) was specified
SysOK The function completed successfully

GetLoad
882D

Sets V to the current belt load for scale S
Method Signature:
function GetLoad (S : Integer; V : Real) : SysCode;
Parameters:

[in] S Scale number
[out] V Current belt load value

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysOK The function completed successfully

GetSpeed
882D

Sets V to the current belt speed for scale S
Method Signature:
function GetSpeed (S : Integer; V : Real) : SysCode;
Parameters:

[in] S Scale number
[out] V Current belt speed

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysOK The function completed successfully

GetRate
882D

Sets V to the current belt rate value for scale S
Method Signature:
function GetRate (S : Integer; V : Real) : SysCode;
Parameters:

[in] S Scale number
[out] V Current belt rate value

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysOK The function completed successfully

Methods Description

Table 5-34. Scale Operation Methods (Continued)

https://www.ricelake.com

API Reference

© Rice Lake Weighing Systems ● All Rights Reserved 111

GetTotalizerUnits
String

882D

Sets V to the text string representing the configured totalizer resolution units for scale S
Method Signature:
function GetTotalizerUnitsString (S : Integer; VAR V : String) : SysCode;
Parameters:

[in] S Scale number
[out] V The configured totalizer resolution units string

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysOK The function completed successfully

Example:
CurrentTotalizerUnitsString : string;
...
GetTotalizerUnitsString (1, CurrentTotalizerUnitsString);

GetLoadUnitsString
882D

Sets V to the text string representing the configured load units for scale S
Method Signature:
function GetLoadUnitsString (S : Integer; VAR V : String) : SysCode;
Parameters:

[in] S Scale number
[out] V The configured load units string

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysOK The function completed successfully

Example:
CurrentLoadUnitsString : string;
...
GetLoadUnitsString (1, CurrentLoadUnitsString);

NOTE: Based on UNITS of METRIC (kg/m) or IMPERIAL (lb/ft)
GetSpeedUnits
String

882D

Sets V to the text string representing the configured belt speed units for scale S
Method Signature:
function GetSpeedUnitsString (S : Integer; VAR V : String) : SysCode;
Parameters:

[in] S Scale number
[out] V The configured belt speed units string

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysOK The function completed successfully

Example:
CurrentSpeedUnitsString : string;
...
GetSpeedUnitsString (1, CurrentSpeedUnitsString);

Methods Description

Table 5-34. Scale Operation Methods (Continued)

iRite Programmer Manual

112 Visit our website www.RiceLake.com

5.22 Alibi Records

GetRateUnitsString
882D

Sets V to the text string representing the configured rate resolution units for scale S
Method Signature:
function GetRateUnitsString (S : Integer; VAR V : String) : SysCode;
Parameters:

[in] S Scale number
[out] V The configured rate resolution units string

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysOK The function completed successfully

Example:
CurrentRateUnitsString : string;
...
GetRateUnitsString (1, CurrentRateUnitsString);

Command Description
AlibiSend

1280
Write the requested alibi record to the requested port.
Method Signature:
function AlibiSend(R : Integer, P : Integer) : SysCode;
Parameters:

[in] R Alibi record number
[in] P Port number

SysCode values returned:
SysNoSuchRecord Requested Alibi record does not exist
SysInvalidPort The port number specified is not valid
SysOK The function completed successfully

Example:
AlibiSend(345, 1);

AlibiLookup
1280

Retrieve requested alibi record.
NOTE: Each alibi record that ends with a “|” is saved.
Method Signature:
function AlibiLookup(R : Integer, VAR S : String) : SysCode;
Parameters:

[in] R Alibi record number
SysCode values returned:

SysNoSuchRecord Requested Alibi record does not exist
SysInvalidPort Insufficient string space available
SysOK The function completed successfully

Example:
AlibiRecordString : string;
...
AlibiLookup(345, AlibiLookupString);

Table 5-35. Alibi Record Commands

Methods Description

Table 5-34. Scale Operation Methods (Continued)

https://www.ricelake.com

Appendix

© Rice Lake Weighing Systems ● All Rights Reserved 113

6.0 Appendix
This section provides additional information about the iRite software.

6.1 Event Handlers
For even handler details, see the following information:

Handler Description
AlertHandler Runs when an error is generated from an attached iQUBE;

Use the EventString function to retrieve the error message displayed by the 920i
BusCommandHandler Runs when new input data is received on the fieldbus; GetImage() or GetImageReal() must be called before the

BusCommandHandler() will be activated again; A new activation of the handler will occur when new input data is present
on the bus

ClearKeyPressed Runs when the CLR key on the numeric keypad is pressed
ClearKeyReleased Runs when the CLR key on the numeric keypad is released
CmdxHandler Runs when an F#x serial command is received on a serial port, where x is the F# command number, 1–32;

The communications port number receiving the command and the text associated with the F#x command can be returned
from the CmdxHandler using the EventPort and EventString functions (Table 5-9 on page 54)

ConnectionChar
Received

Runs when a character is received on connection TCPC1-TCPC3 or PORT1-PORT32. EventConnection function deter-
mines which connection the character was received on. Eventchar function returns a one character string representing the
character that caused the event.
This handler will be queued up for the following events:

• Data received on one of the TCP ports - TCPC1, TCPC2, TCPC3
• Data received on any of the serial ports - PORT1..PORT32 if there is no PortxCharReceived handler installed
• The connection must be configured for Programmability

NOTE: This is not the configured Alias. This is the same name to be used in the WriteOut/WriteOutLn APIs.
DiginSxByActivate Runs when the digital input assigned to slot x, bit y is activated;

Valid bit assignments for slot 0 are 1–4 (for 88x) or 1-6 (for 820 and 1280);
Valid bit assignments for slots 1 through 14 are 1–24

DiginSxByDeactivate Runs when the digital input assigned to slot x, bit y is deactivated;
Valid bit assignments for slot 0 are 1–4 (for 88x) or 1-6 (for 820 and 1280);
Valid bit assignments for slots 1 through 14 are 1–24

DotKeyPressed Runs when the decimal point key on the numeric keypad is pressed
DotKeyReleased Runs when the decimal point key on the numeric keypad is released
EnterKeyPressed Runs when the ENTER key on the front panel is pressed
EnterKeyReleased Runs when the ENTER key on the front panel is released
EventHid For Rice Lake Weighing System use only
GrossNetKeyPressed Runs when the GROSS/NET key is pressed (Not available in the 882D)
GrossNetKeyReleased Runs when the GROSS/NET key is released (Not available in the 882D)
KeyPressed Runs when any front panel key is pressed;

Use the EventKey function within this handler to determine which key caused the event
KeyReleased Runs when any front panel key is released;

Use the EventKey function within this handler to determine which key caused the event
MajorKeyPressed Runs when any of the five preceding major keys is pressed;

Use the EventKey function within this handler to determine which key caused the event
MajorKeyReleased Runs when any of the five preceding major keys is released;

Use the EventKey function within this handler to determine which key caused the event
MenuKeypressed Runs when MENU key is pressed;

Use the EventKey function within this handler to determine which key caused the event (880 and 882D only)
MenuKeyreleased Runs when MENU key is released;

Use the EventKey function within this handler to determine which key caused the event (880 and 882D only)
ModeKeyPressed Runs when the MODE key is pressed (882D only)
ModeKeyReleased Runs when the MODE key is released (882D only)

Table 6-1. Event Handlers

iRite Programmer Manual

114 Visit our website www.RiceLake.com

NavDownKeyPressed Runs when the DOWN navigation key is pressed
NavDownKeyReleased Runs when the DOWN navigation key is released
NavKeyPressed Runs when any of the navigation cluster keys (including ENTER) is pressed;

Use the EventKey function within this handler to determine which key caused the event
NavKeyReleased Runs when any of the navigation cluster keys (including ENTER) is released;

Use the EventKey function within this handler to determine which key caused the event
NavLeftKeyPressed Runs when the LEFT navigation key is pressed
NavLeftKeyReleased Runs when the LEFT navigation key is released
NavRightKeyPressed Runs when the RIGHT navigation key is pressed
NavRightKeyReleased Runs when the RIGHT navigation key is released
NavUpKeyPressed Runs when the UP navigation key is pressed
NavUpKeyReleased Runs when the UP navigation key is released
NumericKeyPressed Runs when any key on the numeric keypad (including CLR or decimal point) is pressed;

Use the EventKey function within this handler to determine which key caused the event
NumericKeyReleased Runs when any key on the numeric keypad (including CLR or decimal point) is released;

Use the EventKey function within this handler to determine which key caused the event (Not supported in the 880 or 920i)
NxKeyPressed Runs when a numeric key is pressed, where x=the key number 0–9
NxKeyReleased Runs when a numeric key is released, where x=the key number 0–9
PortxCharReceived Runs when a character is received on port x, where x is the port number, 1–32; Use the EventChar function within these

handlers to return a one-character string representing the character that caused the event. This handler will only fire if the
associated communications port is set to Programmability.

PrintFmtx Runs when a print format x (1–10) that includes the event raised (<EV>) token is printed
PrintKeyPressed Runs when the PRINT key is pressed
PrintKeyReleased Runs when the PRINT key is released
ProgramStartup Runs when the indicator is powered-up or when exiting setup mode
SetpointKeyPressed Runs when the SETPOINT key is pressed (882D only)
SetpointKeyReleased Runs when the SETPOINT key is released (882D only)
SoftKeyPressed Runs when any softkey is pressed; Use the EventKey function within this handler to determine which key caused the event
SoftKeyReleased Runs when any softkey is released; Use the EventKey function within this handler to determine which key caused the event
SoftxKeyPressed Runs when softkey x is pressed, where x=the softkey number, 1–5, left to right
SoftxKeyReleased Runs when softkey x is released, where x=the softkey number, 1–5, left to right
SPxTrip Runs when setpoint x is tripped, where x is the setpoint number, 1–maximum number of supported setpoints
SPxReset Reset trips when it achieves it setpoints and then drops below setpoint
TareKeyPressed Runs when the TARE key is pressed (Not available in the 882D)
TareKeyReleased Runs when the TARE key is released (Not available in the 882D)
TimerxTrip Runs when timer x is tripped, where x is the timer number, 1–32
UIReset Runs when a new browser connects or refreshes the screen; Use global variables to track prompt text, mode, and a flag to

know if a prompt is open then re-prompt if desired
UnitsKeyPressed Runs when the UNITS key is pressed (Not available in the 882D)
UnitsKeyReleased Runs when the UNITS key is released (Not available in the 882D)
UserxKeyPressed Runs when a user-defined softkey is pressed, where x is the user-defined key number, 1–10
UserxKeyReleased Runs when a user-defined softkey is released, where x is the user-defined key number, 1–10
UserEntry Runs when the ENTER key or Cancel softkey is pressed in response to a user prompt
WidgetClicked Handler activated when any of the widgets are touched;

Works with EventWidget API which returns the number of the widget that was clicked (1280 only)
xKeyReleased This class of event handlers is activated when a key is released; The x is replaced with the name of the key;

Key names are the same as for the xKeyPressed handlers
NOTE: The xKeyReleased handlers are subject to the same timing considerations as all other user handlers.
The events are queued in the order they are detected. Any handler that involves lengthy operations may delay the
start of other handlers.

ZeroKeyPressed Runs when the ZERO key is pressed
ZeroKeyReleased Runs when the ZERO key is released

Handler Description

Table 6-1. Event Handlers (Continued)

https://www.ricelake.com

Appendix

© Rice Lake Weighing Systems ● All Rights Reserved 115

6.2 Compiler Error Messages
For even handler details, see the following information:

Error Messages Cause (Statement Type)
Argument is not a handler name Enable/disable handler
Arguments must have intrinsic type Write/Writeln
Array bound must be greater than zero Type declaration
Array bound must be integer constant Type declaration
Array is too large Type declaration
Conditional expression must evaluate to a discrete data type If/while statement
Constant object cannot be stored Object declaration
Constant object must have initializer Object declaration
Exit outside all loops Exit statement
Expected array reference Subscript reference
Expected object or function reference Qualifying expression
Expression must be numeric For statement
Expression type does not match declaration Initializer
Function name overloads handler name Function declaration uses name reserved for handler
Handlers may not be called Procedure/function call
Identifier already declared in this scope All declarations
Illegal comparison Boolean expression
Index must be numeric Subscript reference
Invalid qualifier Qualifying expression
Loop index must be integer type For statement
Name is not a subprogram Procedure/function call
Name is not a valid handler name Handler declaration
Not a member of qualified type Qualifying expression
Only a function can return a value Procedure/handler declaration
Operand must be integer or enumeration type Function or procedure call
Operand must be integer type Logical expression
Operand type mismatch Expression
Parameter is not a valid l-value Procedure/function call
Parameter type mismatch Procedure/function call
Parameters cannot be declared constant Subprogram declaration
Port parameter must be integer type Write/Writeln
Procedure name overloads handler name Procedure declaration uses name reserved for handler
Procedure reference expected Subprogram invocation
Record fields cannot be declared constant Type declaration
Record fields cannot be declared stored Type declaration
Reference is not a valid assignment target Assignment statement
Return is only allowed in a subprogram Startup body
Return type mismatch Return statement
Step value must be constant For statement
Subprogram invocation is missing parameters Procedure/function call
Syntax error Any statement
Cannot find system files Internal error
Compiler error — Context stack error Internal error
Too many names declared in this context Any declaration
Operand must be numeric Numeric operators
Subprogram reference expected Procedure/function call
Type mismatch in assignment Assignment statement
Type reference expected User-defined type name
Undefined identifier Identifier not declared
VAR parameter type must match exactly Procedure/function call
Wrong number of array subscripts Subscript reference
Wrong number of parameters Procedure/function call

Table 6-2. iRite Compiler Error Messages

iRite Programmer Manual

116 Visit our website www.RiceLake.com

6.3 Database Operations
The 1280, 820i, 880 and 882D use Revolution and the 920i uses iRev to edit, save, and restore databases. This section
describes procedures for maintaining databases.
6.3.1 Uploading
To upload a database from the indicator (for viewing, editing, or backup), do the following:

1. Make a serial connection between the PC and the indicator.
2. Start Revolution/iRev.
3. Connect to the indicator by clicking on the Connect button on the right side of the top toolbar.
4. Click the Database bar on the left side of the Revolution/iRev window.
5. Click the Data Editor icon.
6. Select the database to upload, then click the Upload button on top right of the toolbar.
7. A status message box will confirm that Revolution/iRev is Uploading Data. When complete, the message will change

to Upload Complete. Please export your data to a delimited file for backup. Press OK.
The contents of the indicator database can now be viewed, edited, or exported.

NOTE: Changing the database in Revolution/iRev does not change the database stored in the indicator; the existing
indicator database must be cleared and replace it by downloading the edited database (Section 6.3.5 on page 117).

6.3.2 Exporting
For display, printing, or backup, save a database opened in Revolution/iRev to a text file by using the Export function.

1. With an open database uploaded to or created in Revolution/iRev, click Export on the top toolbar.
2. A dialog box is shown to select the separator (delimiter) to be used to separate the database fields.

Examples:
Tab-delimiting – Elliot Robert 1234 555-8686
Semi-colon delimiting – Elliot;Robert;1234;555-8686

3. Once delimiter is selected, press Begin. A prompt appears to choose where to store the text file, save it in the same
folder as other program files.

When complete, a message box confirms Export Successful. The exported file can be used for viewing or printing the
database, or for later import to Revolution for download to the indicator.

https://www.ricelake.com

Appendix

© Rice Lake Weighing Systems ● All Rights Reserved 117

6.3.3 Importing
Import brings a previously exported text file into Revolution/iRev. The imported database can be downloaded to the indicator.

1. Start the Revolution/iRev Data Editor and select the table you into which you want to import data.
2. Press Import on the top toolbar.
3. A dialog box appears to select the file to import. Double click on the file to import.
4. The Data Import Wizard box appears that displays the first couple of rows of data in your file. Notice that the field

names are shown as the first row. They should not be imported into the database since the field names are not part
of the data. Click the up arrow next to Start import at row: prompt to start at row 2 (the actual data).

5. Press Next and select the separator (delimiter) character used when the file is exported (the default is tab-delimited).
6. Press Next again, then Press Finish to import the file. All of the data should now be displayed in Revolution/iRev.

To downloaded the imported database to the indicator, follow the procedure described in Section 6.3.5.

6.3.4 Clearing
The Clear All button on the top of the toolbar in the Revolution/iRev Data Editor clears both the Revolution/iRev screen and the
entire indicator database. The existing indicator database must be cleared before downloading edited data, but this function
must be used with care to avoid losing data.
To clear a database:

1. Upload the database from the indicator (Section 6.3.1 on page 116).
2. Edit the database and fields, if necessary.
3. Use the Export function described in Section 6.3.2 on page 116 to save a copy of the database.
4. Highlight all of the fields at once and copy them using either Ctrl-C or by choosing Edit-Copy from the toolbar.
5. Press the Clear All button to clear both the indicator database and the Revolution/iRev fields.
6. Upload the blank database from the indicator to ensure data integrity. The lock symbol on the Revolution/iRev screen

will open, allowing a new database to be downloaded.
7. To replace the cleared database with edited data, move the cursor to the upper left-hand box and paste the copied

data into the Revolution/iRev database. (Press Ctrl-V or choose Edit-Paste from the toolbar.)
8. Press the Download button to send fresh, edited data back down to the indicator (Section 6.3.5).

6.3.5 Downloading
NOTES: When downloading data to the indicator, it does not overwrite data that is there. Downloaded data is added to the
database regardless of whether it is the same data. If uploaded data is edited in Revolution/iRev and is to be used to
replace the indicator database, a Clear All must be done first, upload the cleared (blank) database, and then download the
edited data (Section 6.3.4)

1. Create or edit the data in the rows and columns to be entered in the database.
2. With the indicator connected, press the Download button at the top on the toolbar.
3. A status box shows the download progress (Downloading Row [number] of [total rows]). When complete, a

Download completed successfully message is shown. The database is now stored in the indicator.

iRite Programmer Manual

118 Visit our website www.RiceLake.com

6.4 Fieldbus User Program Interface
(Not used with the 880 and 882D)
The fieldbus data APIs (Section 5.7 on page 78), two type definitions (BusImage, BusImageReal), and the EventPort function
are used to manage fieldbus data.
The function of BusCommandHandler is similar to other user-written event handlers. When present and enabled with the
EnableHandler(BusCommandHandler) call, the BusCommandHandler is activated every time a message is received on a
fieldbus. Keeping the BusCommandHandler execution short is important in order to not miss data transfers on the fieldbus.
The normal operation of BusCommandHandler is expected to include the following system calls in the following order:

• EventPort
• GetImage, or GetImageReal
• SetImage, or SetImageReal

With intervening code to perform the required user functions. The SetImage or SetImageReal call should be as close to the end
of the BusCommandHandler as possible.
The BusImage type is the data type passed in GetImage and SetImage (or, for real data, GetImageReal and SetImageReal).
GetImage(fieldbus_no : integer; var data : BusImage) : SysCode

This call returns an array of data as received from the fieldbus. As only the data elements received on the fieldbus are changed
in a GetImage call, the array should be initialized prior to the GetImage call. The fieldbus_no is the number returned by an
EventPort call from within the BusCommandHandler.
SetImage(fieldbus_no : integer; var data : BusImage) : SysCode

This call writes data to the fieldbus chip for access on the next cycle of the PLC. All data elements of the data array should be
properly set before calling SetImage. The fieldbus_no is the number returned by an EventPort call from within the
BusCommandHandler.

https://www.ricelake.com

Appendix

© Rice Lake Weighing Systems ● All Rights Reserved 119

Example BusCommandHandler Code
--
-- Handler Name : BusCommandHandler
-- Created By : Rice Lake Weighing Systems
-- Last Modified on : 1/16/2003
--
-- Purpose : Example handler skeleton.
--
-- Side Effects :
--
handler BusCommandHandler;
--Declaration Section
busPort : integer;
data : BusImage;
i : integer;
result : SysCode;
begin
 -- Clear out the data array.
 for i := 1 to 32 loop
 data[i] := 0;
 end loop;

 -- Find out which port (which bus card) started this event.
 busPort := EventPort;

 -- Then read the received data.
 result := GetImage(busPort, data);

-- Test result as desired

-- Data interpretation and manipulation goes here.

 -- Finally, put the changed data back.
 result := SetImage(busPort, data);

-- Test result as desired

end;

iRite Programmer Manual

120 Visit our website www.RiceLake.com

6.5 Program to Retrieve Hardware Configuration
The HARDWARE serial command (see the indicator installation manual) returns a list of coded identifiers to describe which
option cards are installed in a system. The following program provides a similar function by deciphering the coded values
returned by the HARDWARE command and printing a list of installed option cards.

NOTE: This example is for a 920i. To prevent an Array Bounds error, the size of the array cannot exceed the number of
available slots for the indicator type (920i = 14, 820i and 882D = 2, 880 = 1, and 1280 = 6). In addition, supported
HW_array_type types vary depending on indicator type (Section 4.0 on page 35).
program Hardware;

 my_array : HW_array_type;

handler User1KeyPressed;

 i : integer;
 begin
 Hardware(my_array);
 for i := 1 to 14
 loop
 if my_array[i] = NoCard then
 WriteLn(2,"Slot ",i," No Card");
 elsif my_array[i] = DualAtoD then
 WriteLn(2,"Slot ",i," DualAtoD");
 elsif my_array[i] = SingleAtoD then
 WriteLn(2,"Slot ",i," SinglAtoD");
 elsif my_array[i] = DualSerial then
 WriteLn(2,"Slot ",i," DualSerial");
 elsif my_array[i] = AnalogOut then
 WriteLn(2,"Slot ",i," AnalogOut");
 elsif my_array[i] = DigitalIO then
 WriteLn(2,"Slot ",i," DigitalIO");
 elsif my_array[i] = Pulse then
 WriteLn(2,"Slot ",i," Pulse");
 elsif my_array[i] = Memory then
 WriteLn(2,"Slot ",i," Memory");
 elsif my_array[i] = DeviceNet then
 WriteLn(2,"Slot ",i," DeviceNet");
 elsif my_array[i] = Profibus then
 WriteLn(2,"Slot ",i," Profibus");
 elsif my_array[i] = Ethernet then
 WriteLn(2,"Slot ",i," Ethernet");
 elsif my_array[i] = ABRIO then
 WriteLn(2,"Slot ",i," ABRIO");
 elsif my_array[i] = BCD then
 WriteLn(2,"Slot ",i," BCD");
 elsif my_array[i] = DSP2000 then
 WriteLn(2,"Slot ",i," DSP2000");
 elsif my_array[i] = AnalogInput then
 WriteLn(2,"Slot ",i," AnalogInput");
 elsif my_array[i] = ControlNet then
 WriteLn(2,"Slot ",i," ControlNet");
 elsif my_array[i] = DualAnalogOut then
 WriteLn(2,"Slot ",i," DualAnalogOut");
 end if;
 end loop;
 WriteLn(2,"");
 end;
end Hardware;

https://www.ricelake.com

Appendix

© Rice Lake Weighing Systems ● All Rights Reserved 121

6.6 920i User Graphics
iRite user programs can be used to display graphics. The entire 920i display is writable; graphics can be of any size, up to the
full size of the 920i display, and up to 100 graphic images can be displayed. The actual number of graphics that can be loaded
depends on the size of the graphics and of the user program, both of which reside in the user program space.
Graphics used in iRite programs can be from any source but must be saved as monochrome bitmap (.bmp) files with write
access (file cannot be read-only). To enable the file for use in an iRite program, it is converted to a user program #include (.iri)
file using the bmp2iri.exe program (Figure 6-1).

Figure 6-1. Example of Converting Bitmapped Graphic (prompt.bmp) to an .iri File

Figure 6-1 shows the conversion process for a graphic file, prompt.bmp, to a user program #include, bitmap.iri. The
conversion is done by running the bmp2iri.exe program in a DOS command window: note that the bmp2iri program assumes
the .bmp extension for the input graphic file (prompt.bmp). If additional files are converted using bmp2iri.exe, the output of the
program is appended to the bitmap.iri file.
To display the graphic, the bitmap.iri file must be incorporated into the user program by doing the following

• In the iRite source (.src) file, immediately following the program declaration, add: #include bitmap.iri
• In the startup handler, call the array initialization routine for each graphic
• To display or erase a graphic, or to clear all graphics, call the DrawGraphic API with the appropriate parameters

(Table 5-20 on page 81)

prompt.bmp

bitmapped graphicDOS command window: run bmp2iri.exe

C:\bmp2iri prompt
C:\

bmp2iri.exe

g_Prompt : DisplayImage;

Procedure initPrompt;
begin
 g_Prompt [1] := 16;
 g_Prompt [1] := 16;
 g_Prompt [1] := 132153342;
 g_Prompt [1] := 2147368956;
 g_Prompt [1] := 536350704;
 g_Prompt [1] := 2147385342;
 g_Prompt [1] := 1073483760;
 g_Prompt [1] := 2122218558;
 g_Prompt [1] := 1010572920;
 g_Prompt [1] := 132121536;
 ...

bitmap.iri file

iRite Programmer Manual

122 Visit our website www.RiceLake.com

https://www.ricelake.com

230 W. Coleman St. • Rice Lake, WI 54868 • USA USA: 800-472-6703 • International: +1-715-234-9171
© Rice Lake Weighing Systems Content subject to change without notice.

www.ricelake.com PN 67888 Rev RJanuary 22, 2026

	Revision History
	1.0 Introduction
	1.1 Overview
	1.2 iRite Programs
	1.3 Sound Programming Practices

	2.0 Tutorial
	2.1 Program Example with Constants and Variables

	3.0 Language Syntax
	3.1 Lexical Elements
	3.1.1 Identifiers
	3.1.2 Keywords
	3.1.3 Constants
	3.1.4 Delimiters
	iFarenheit := ((9.0/5.0) * iCelcius) + 32; -- enforce proper precedence
	if (iVal >= 12) and (iVal <= 34) or (iMaxVal > 200) -- conditional expr.
	EnableSP(5); -- function parameters
	type CheckerBoard is array [8, 8] of recSquare;
	iThirdElement := aiValueArray[3];
	type Matrix is array [4,8] of integer;
	GetFilteredCount(iScale, iCounts);
	function GetAverageWeight(iScale : integer) : real;
	iIndex : integer;
	csCopyright : constant string := "2002 Rice Lake Weighing Systems";
	if sCommand = "download data" then
	Write(iPCPort, "Data download in progress. Please wait…");
	if iPointsScored = 6 then
	if iSpeed > 65 then
	if rGPA <= 3.0 then
	if sEntry <> "2" then
	rTolerance := 10.0 / 3.0
	…
	if rTolerance * 3 = 10 then
	-- do something
	end if;
	if (iSpeed > 55) and (not flgInterstate) or (strOfficer = "Cranky") then
	sDriverStatus := "Busted";
	rResult : 7 mod 3; -- rResult should equal 1
	rSlope : real;
	rSlope := 4/7;
	rSlope := 4.0/7;
	rSlope : real;
	iRise : integer := 4;
	iRun : integer := 7;
	rSlope := (iRise * 1.0) / iRun;
	3 := 1 + 1; -- not valid
	ciMaxAge := 67; -- where ciMaxAge was declared with keyword constant
	iInteger := "This is a string, not an integer!"; -- incompatible types

	3.2 Program Structure
	<program>:
	program IDENTIFIER ’;’
	<decl-section>
	<optional-main-body>
	end IDENTIFIER ’;’
	;
	<optional-main-body>:
	/* NULL */
	| begin <stmt-list>
	;
	program MyProgram;
	KeyCounter : Integer;
	handler AnyKeyPressed;
	begin
	KeyCounter := KeyCounter + 1;
	end;
	begin
	KeyCounter := 0
	end MyProgram;
	program Template; -- program name is always first!
	-- Put include (.iri) files here.
	#include template.iri
	-- Constants and aliases go here.
	g_csProgName : constant string := "Template Program";
	g_csVersion : constant string := "0.01";
	g_ciArraySize : integer := 100;
	-- User defined type definitions go here.
	type tShape is (Circle, Square, Triangle, Rectangle, Octagon, Pentagon, Dodecahedron);
	type tColor is (Blue, Red, Green, Yellow, Purple);
	type tDescription is
	record
	eColor : tColor;
	eShape : tShape;
	end record;
	type tBigArray is array [g_ciArraySize] of tDescription;
	-- Variable declarations go here.
	g_iBuild : integer;
	g_srcResult : SysCode;
	g_aArray : tBigArray;
	g_rSingleRecord : tDescription;
	-- Start functions and procedures definitions here.
	function MakeVersionString : string;
	sTemp : string;
	begin
	if g_iBuild > 9 then
	sTemp := ("Ver " + g_csVersion + "." + IntegerToString(g_iBuild, 2));
	else
	sTemp := ("Ver " + g_csVersion + ".0" + IntegerToString(g_iBuild, 1));
	end if;
	return sTemp;
	end;
	procedure DisplayVersion;
	begin
	DisplayStatus(g_csProgName + " " + MakeVersionString);
	end;
	-- Begin event handler definitions here.
	handler User1KeyPressed;
	begin
	DisplayVersion;
	end;
	-- This chunk of code is the system startup event handler.
	begin
	-- Initialize all global variables here.
	-- Increment the build number every time you make a change to a new version.
	g_iBuild := 3;
	-- Display the version number to the display.
	DisplayVersion;
	end Template;

	3.3 Declarations
	3.3.1 Type Declarations
	<type-declaration>:
	type IDENTIFIER is <type-definition> ';'
	;
	<type-definition>:
	<record-type-definition>
	| <array-type-definition>
	| <database-type-definition>
	| <enum-type-definition>
	;
	<enum-type-definition>:
	'(' <identifier-list> ')'
	;
	<identifier-list>:
	IDENTIFIER
	| <identifier-list> ',' IDENTIFIER
	;
	type StopLightColors is (Green, Yellow, Red);
	type BatchStates is (NotStarted, OpenFeedGate, CloseGate, WaitforSS, PrintTicket, AllDone);
	<record-type-definition>:
	record
	<field-declaration-list>
	end record
	;
	<field-declaration-list>:
	<field-declaration>
	| <field declaration-list>
	<field declaration>
	;
	<field-declaration>:
	IDENTIFIER ':' <type> ';'
	;
	type MyRecord is
	record
	A : integer;
	B : real;
	end record;
	type tDepartment is (Shipping, Sales, Engineering, Management);
	type tEmptype is (Hourly, Salaried);
	type EmployeeRecord is
	record
	ID : integer;
	Last : string;
	First : string;
	Dept : tDepartment;
	EmployeeType : tEmptype;
	end record;
	<database-type-definition>:
	database (STRING_CONSTANT)
	<field-declaration-list>
	end database
	;
	<field-declaration-list>:
	<field-declaration>
	| <field declaration-list>
	<field declaration>
	;
	<field-declaration>:
	IDENTIFIER ':' <type> ';'
	;
	type MyDB is
	database ("DBALIAS")
	A : integer
	B : real
	end database;
	;
	<array-type-definition>:
	array '[' <expr-list> ']' of <type>
	;
	type Weights is array [25] of Real;
	An array consisting of user-defined records could be defined as follows:
	type Employees is array [100] of EmployeeRecord;
	type MyArray is array [10,10] of Integer;

	3.3.2 Variable Declarations
	<variable-declaration>:
	IDENTIFIER ':' <stored-option> <constant-option> <type>
	<optional-initial-value>
	;
	<stored-option>:
	/* NULL */
	| stored
	;
	<constant-option>:
	/* NULL */
	| constant
	;
	<optional-initial-value>:
	/* NULL */
	| := <expr>
	;
	MyVariable : StopLightColor; -- Declare MyVariable
	MyCount : stored Integer; --Declare a stored variable of type Integer

	3.3.3 Subprogram Declarations
	<handler-declaration>:
	handler IDENTIFIER ';'
	<decl-section>
	begin
	<stmt-list>
	end ';'
	;
	handler SP1Trip;
	I : Integer;
	begin
	for I := 1 to 10
	loop
	Writeln (1, "Setpoint Tripped!");
	if I=2 then
	return;
	endif;
	end loop;
	end;
	<procedure-declaration>:
	procedure IDENTIFIER
	<optional-formal-args> ';'
	<decl-section>
	begin
	<stmt-list>
	end ';'
	;
	<optional-formal-args>:
	/* NULL */
	| <formal-args>
	;
	<formal-args>:
	'(' <arg-list> ')'
	;
	<arg-list>:
	<optional-var-spec>
	<variable-declaration>
	| <arg-list> ';' <optional-var-spec>
	<variable-declaration>
	;
	<optional-var-spec>:
	/* NULL */
	| var
	;
	procedure PrintString (S : String);
	begin
	Writeln (1, "The String is => ",S);
	end;
	procedure ShowVersion;
	begin
	DisplayStatus ("Version 1.42");
	end;
	procedure Inc (var iVariable : Integer);
	begin
	iVariable := iVariable + 1;
	end;
	<function-declaration>:
	function IDENTIFIER
	<optional-formal-args> ':' <type> ';'
	<decl-section>
	begin
	<stmt-list>
	end ';'
	;
	function Sum (A : integer; B : integer) : Integer;
	begin
	return A + B;
	end;
	function PoundsPerGallon : Real;
	begin
	return 8.34;
	end;

	3.4 Statements
	<stmt>:
	<assign-stmt>
	| <call-stmt>
	| <if-stmt>
	| <return-stmt>
	| <loop-stmt>
	| exit-stmt>
	;
	3.4.1 Assignment Statement
	iMaxPieces := 12000;
	rRotations := 25.3456;
	sPlaceChickenPrompt := "Please place the chicken on the scale…";
	iRevision : integer := 1;
	rPricePerPound : real := 4.99;
	csProgramName : constant string := "Pig and Chicken Weigher";
	for iCounter := 1 to 25
	for iTries := ciFirstTry to ciMaxTries
	sysReturn := GetSPTime(4, dtDateTime);
	rCosine := Cos(1.234);
	iTotalLivestock := iNumChickens + iNumPigs + GetNumCows;
	rTotalCost := ((iNumBolt * rBoltPrice) + (iNumNuts * rNutPrice)) * (1 + rTaxRate);
	sOutputText := The total cost is : " + RealToString(rTotalCost, 4, 2) + " dollars.";
	iValue := 34.867; -- Loss of significant digits! iValue will equal 34, no rounding!
	rDegrees := 212; -- No problem! rDegrees will equal 212.000000000000000000

	3.4.2 Call Statement
	<call-stmt>:
	<name> ';'
	;
	program GlobalAsVar;
	g_ciPrinterPort : constant integer := 2;
	g_sString : string := "Initialized, not changed yet";
	procedure PrintGlobalString;
	begin
	WriteLn(g_ciPrinterPort, g_sString);
	end;
	procedure SetGlobalString (var vsStringCopy : string);
	begin
	vsStringCopy := "String has been changed";
	Write(g_ciPrinterPort, "In function call: ");
	PrintGlobalString;
	end;
	begin
	Write(g_ciPrinterPort, "Before function call: ");
	PrintGlobalString;
	SetGlobalString(g_sString);
	Write(g_ciPrinterPort, "After function call: ");
	PrintGlobalString;
	end GlobalAsVar;
	Before function call: Initialized, not changed yet
	In function call: Initialized, not changed yet
	After function call: String has been changed

	3.4.3 If Statement
	if <expression> then
	<statement list>
	end if;
	if iStrikes = 3 then
	sResponse := "You’re out!";
	end if;
	if <expression> then
	<statement list 1>
	else
	<statement list 2>
	end if;
	if iAge => 18 then
	sStatus := "Adult";
	else
	sStatus := "Minor";
	end if;
	if <expression> then
	<statement list 1>
	elsif <expression> then
	<statement list 2>
	elsif <expression> then
	<statement list 3>
	elsif <expression> then
	<statement list 4>
	else
	<statement list 5>
	end if;
	if rWeight <= 2.0 then
	iGrade := 1;
	elsif (rWeight > 2.0) and (rWeight < 4.5) then
	iGrade := 2;
	elsif (rWeight > 4.5) and (rWeight < 9.25) then
	iGrade := 3;
	elsif (rWeight > 9.25) and (rWeight < 11.875) then
	iGrade := 4;
	else
	iGrade := 0;
	sErrorString := "Invalid Weight!";
	end if;

	3.4.4 Loop Statement
	loop
	<statement list>
	end loop;
	rGrossWeight : real;
	loop
	WriteLn(2, "I’m in a loop.");
	GetGross(1, Primary, rGrossWeight);
	if rGrossWeight > 200 then
	exit;
	end if;
	end loop;
	while <expression>
	loop
	<statement list>
	end loop;
	rGrossWeight : real;
	GetGross(1, Primary, rGrossWeight);
	while rGrossWeight <= 200
	loop
	WriteLn(2, "I’m in a loop.");
	GetGross(1, Primary, rGrossWeight);
	end loop;
	for <name> := <expression> to <expression> step <expression>
	loop
	<statement list>
	end loop;
	for iCount := 97 to 122
	loop
	strAlpha := strAlpha + chr$(iCount);
	end loop;
	for iCount := 10 to 0 step -1
	loop
	if iCount = 0 then
	strMissionControl := "Blast off!";
	else
	strMissionControl := IntegerToString(iCount, 2);
	end if;
	end loop;

	3.4.5 Return Statement
	procedure DontDoMuch;
	begin
	if PromptUser("circle: ") <> SysOK then
	return;
	end if;
	end;
	function Inc(var viNumber : integer) : integer;
	begin
	viNumber := viNumber + 1;
	return viNumber;
	end;

	3.4.6 Exit Statement

	4.0 Built-in Types
	4.1 Using SysCode Data
	Procedure GetTareWeight
	SysResult : SysCode;
	TareWeight : Real;
	begin
	SysResult:= GetTare(1, Primary, TareWeight);
	If SysResult = SysOk then
	WriteLn(1, “The current tare weight is “ + realtostring(TareWeight,0,4));
	end if;
	end;

	5.0 API Reference
	5.1 Scale Data Acquisition
	5.1.1 Weight Acquisition
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[out] C Scale capacity
	SysInvalidScale The scale specified by S does not exist
	SysInvalidUnits The units value U is not valid
	SysOK The function completed successfully
	Capacity : Real;
	…
	GetCapacity (1, Primary, Capacity);
	function GetFilteredCount (S : Integer; VAR C : Integer) : SysCode;
	[in] S Scale number
	[out] C Current filtered A/D count
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S is not an A/D-based scale
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	FilterCount : Integer;
	…
	GetFilteredCount (1, FilterCount);
	function GetGross (S : Integer; U : Units; VAR W : Real) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[out] W Gross weight
	SysInvalidScale The scale specified by S does not exist
	SysInvalidUnits The units specified by U is not valid
	SysInvalidRequest The requested value is not available
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	GrossWeight : Real;
	…
	GetGross (1, Primary, GrossWeight);
	WriteLn (1, "Current gross weight is " + RealToString(GrossWeight,0,1));
	function GetNet (S : Integer; U : Units; VAR W : Real) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[out] W Net weight
	SysInvalidScale The scale specified by S does not exist
	SysInvalidUnits The units specified by U is not valid
	SysInvalidRequest The requested value is not available
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	NetWeight : Real;
	…
	GetNet (Scale1, Secondary, NetWeight);
	WriteLn (1, "Current net weight is " + RealToString(NetWeight,0,1));
	function GetRawCount (S : Integer; VAR C : Integer) : SysCode;
	[in] S Scale number
	[out] C Current raw A/D count
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S is not an A/D-based scale
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	RawCount : Integer;
	…
	GetRawCount (1, RawCount);
	function GetMV (S : Integer; VAR MV : Real) : SysCode;
	[in] S Scale number
	[out] R Millivolts
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The requested value is not available
	SysOK The function completed successfully

	Millivolt : Real;
	…
	GetMV (1, Millivolt);
	WriteIn (1, “Current Millivolt reading is” + realtostring(Millivolt,0,2));

	function GetTare (S : Integer; U : Units; VAR W : Real) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[out] W Tare weight
	SysInvalidScale The scale specified by S does not exist
	SysInvalidUnits The units specified by U is not valid
	SysInvalidRequest The requested value is not available
	SysNoTare The specified scale has no tare; W is set to 0.0
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	TareWeight : Real;
	…
	GetTare (1, Tertiary, TareWeight);
	WriteLn (1, "Current tare weight is " + RealToString(TareWeight,0,1));

	5.1.2 Weight Data Recording
	Procedure CloseDataRecording (scale_no : Integer);
	[in] scale_no Scale Number

	Function GetDataRecordSize(scale_no : Integer) : Integer;
	[in] scale_no Scale Number
	[out] number The number of data points recorded

	Function InitDataRecording (data : DataArray; scale_no : Integer; start_sp : Integer; stop_sp : Integer) : SysCode;
	[in] data Data array name
	[in] scale_no Scale Number
	[in] start_sp Start setpoint number
	[in] stop_sp Stop setpoint number
	SysRequestFailed The function did not complete
	SysOk The function completed successfully

	Function SetDataRecordPrecision (scale_no : Integer; precision : OnOffType) : SysCode;
	[in] scale_no Scale Number
	[in] precision OnOffType Von or VOff
	SysRequestFailed The function did not complete
	SysOk The function completed successfully

	Function StartWeightCollection (scale_no : Integer; data : WeightCollectionArray) : SysCode;
	[in] scale_no Scale Number
	[in] data Data array name
	SysRequestFailed The function did not complete
	SysOk The function completed successfully

	Function StopWeightCollection(scale_no : Integer) : Integer;
	[in] scale_no Scale Number
	[out] number The number of data points recorded

	5.1.3 Tare Manipulation
	function AcquireTare (S : Integer) : SysCode;
	[in] S Scale number
	SysInvalidRequest The specified scale is Legal for Trade Serial Scale. No tare is acquired
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysLFTViolation The tare operation would violate configured legal-for-trade restrictions for the specified scale; no tare is acquired
	SysOutOfRange The tare operation would acquire a tare that may cause a display overload. No tare is acquired.
	SysPermissionDenied The tare operation would violate configured tare acquisition restrictions for the specified scale; no tare is acquired
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	AcquireTare (1);
	function ClearTare (S : Integer) : SysCode;
	[in] S Scale number
	SysInvalidRequest The specified scale is Legal for Trade Serial Scale; no tare is acquired
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysNoTare The scale specified by S has no tare
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	ClearTare (1);
	function GetTareType (S : Integer; VAR T : TareType) : SysCode;
	[in] S Scale number
	[out] T Tare type
	NoTare There is no tare value associated with the specified scale
	PushbuttonTare The current tare was acquired by pushbutton
	KeyedTare The current tare was acquired by key entry or by setting the tare
	SysDeviceError The scale is reporting an error condition; T is still set to the tare type
	SysInvalidScale The scale specified by S does not exist or is a program scale; T is unchanged
	SysOK The function completed successfully

	TT : TareType;
	…
	GetTareType (1, TT);
	if TT=KeyedTare then …
	function SetTare (S : Integer; U : Units; W : Real) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[in] W Tare weight
	SysInvalidRequest The specified scale is Legal for Trade Serial Scale; no tare is acquired
	SysPermissionDenied The tare operation would violate configured tare acquisition restrictions for the specified scale; no tare is acquired
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysInvalidUnits The units specified by U is not valid
	SysLFTViolation The tare operation would violate configured legal-for-trade restrictions for the specified scale; no tare is acquired
	SysOutOfRange The tare operation would acquire a tare that may cause a display overload; no tare is acquired
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	DesiredTare : Real;
	…
	DesiredTare := 1234.5;
	SetTare (1, Primary, DesiredTare);
	function SetTare (S : Integer; U : Units; W : Real) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[in] W Tare weight
	SysInvalidRequest The specified scale is Legal for Trade Serial Scale; no tare is acquired
	SysPermissionDenied The tare operation would violate configured tare acquisition restrictions for the specified scale; no tare is acquired
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysInvalidUnits The units specified by U is not valid
	SysLFTViolation The tare operation would violate configured legal-for-trade restrictions for the specified scale; no tare is acquired
	SysOutOfRange The tare operation would acquire a tare that may cause a display overload; no tare is acquired
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	DesiredTare : Real;
	…
	DesiredTare := 1234.5;
	SetTare (1, Primary, DesiredTare);

	5.1.4 Rate of Change
	function GetROC (S : Integer; VAR R : Real) : SysCode;
	[in] S Scale number
	[out] R Rate of change value
	SysInvalidRequest The scale specified by S is not an A/D scale, an industrial serial scale, or Rate of Change is not supported
	SysInvalidScale The scale specified by S does not exist
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	ROC : Real;
	…
	GetROC (1, ROC);
	WriteLn (1, "Current ROC is " + RealToString(ROC,0,1));

	5.1.5 Accumulator Operations
	function ClearAccum (S : Integer) : SysCode;
	[in] S Scale number
	SysInvalidScale The scale specified by S does not exist
	SysPermissionDenied The accumulator is not enabled for the specified scale
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	ClearAccum (1);
	function GetAccum (S : Integer; U : Units; VAR W : Real) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[out] W Accumulated weight
	SysInvalidScale The scale specified by S does not exist
	SysInvalidUnits The units specified by U is not valid
	SysDeviceError The scale is reporting an error condition; D is still updated with the date of the most recent accumulation
	SysPermissionDenied The accumulator is not enabled for the specified scale
	SysOK The function completed successfully

	AccumValue : Real;
	…
	GetAccum (1, Primary, AccumValue);
	function GetAccumCount (S : Integer; VAR N : Integer) : SysCode;
	[in] S Scale number
	[out] N Accumulator count
	SysInvalidScale The scale specified by S does not exist
	SysPermissionDenied The accumulator is not enabled for the specified scale
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	NumAccums : Integer;
	…
	GetAccumCount (1, NumAccums);
	function GetAccumDate (S : Integer; VAR D : String) : SysCode;
	[in] S Scale number
	[out] D Accumulator date
	SysInvalidScale The scale specified by S does not exist
	SysPermissionDenied The accumulator is not enabled for the specified scale
	SysDeviceError The scale is reporting an error condition; D is still updated with the date of the most recent accumulation
	SysOK The function completed successfully

	AccumDate : String;
	…
	GetAccumDate (1, AccumDate);
	function GetAccumTime (S : Integer; VAR T : String) : SysCode;
	[in] S Scale number
	[out] T Accumulator time
	SysInvalidScale The scale specified by S does not exist
	SysPermissionDenied The accumulator is not enabled for the specified scale
	SysDeviceError The scale is reporting an error condition. T is still updated with the time of the most recent accumulation
	SysOK The function completed successfully

	AccumTime : String;
	…
	GetAccumTime (1, AccumTime);
	function GetAvgAccum (S : Integer; U : Units; VAR W : Real) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[out] W Average accumulator weight
	SysInvalidScale The scale specified by S does not exist
	SysInvalidUnits The units specified by U is not valid
	SysDeviceError The scale is reporting an error condition. W is still updated with the average accumulator value
	SysPermissionDenied The accumulator is not enabled for the specified scale
	SysOK The function completed successfully

	AvgAccum : Real;
	…
	GetAvgAccum (1, AvgAccum);
	function SetAccum (S : Integer; U : Units; W : Real) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[in] W Accumulator value
	SysInvalidScale The scale specified by S does not exist
	SysInvalidUnits The units specified by U is not valid
	SysDeviceError The scale is reporting an error condition
	SysPermissionDenied The accumulator is not enabled for the specified scale
	SysOK The function completed successfully

	AccumValue : Real;
	…
	AccumValue := 110.5
	SetAccum (1, Primary, AccumValue);

	5.1.6 Scale Operation
	function CurrentScale : Integer;
	ScaleNumber : Integer;
	…
	ScaleNumber := CurrentScale;
	function GetMode (S : Integer; VAR M : Mode) : SysCode;
	[in] S Scale number
	[out] M Current display mode
	GrossMode Scale S is currently in gross mode
	NetMode Scale S is currently in net mode
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysDeviceError The scale is reporting an error condition; M is still updated with the current display mode
	SysOK The function completed successfully

	CurrentMode : Mode;
	…
	GetMode (1, CurrentMode);
	function GetUnits (S : Integer; VAR U : Units) : SysCode;
	[in] S Scale number
	[out] U Current display units
	Primary Primary units are currently displayed on scale S
	Secondary Secondary units are currently displayed on scale S
	Tertiary Tertiary units are currently displayed on scale S
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	CurrentUnits : Units;
	…
	GetUnits (1, CurrentUnits);
	function GetUnitsString (S : Integer; U : Units; VAR V : String) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[out] V Current display units string
	Primary Get the Primary units string for scale S
	Secondary Get the Secondary units string for scale S
	Tertiary Get the Tertiary units string for scale S
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysInvalidUnits The units value specified by U does not exist
	SysOK The function completed successfully

	CurrentUnitsString : String;
	…
	GetUnitsString (1, Primary, CurrentUnitsString);
	function InCOZ (S : Integer; VAR V : Integer) : SysCode;
	[in] S Scale number
	[in] V Center-of-zero value
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	ScaleAtCOZ : Integer;
	…
	InCOZ (1, ScaleAtCOZ);
	function InMotion (S : Integer; VAR V : Integer) : SysCode;
	[in] S Scale number
	[out] V In-motion value
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	ScaleInMotion : Integer;
	…
	InMotion (1, ScaleInMotion);
	function InRange (S : Integer; VAR V : Integer) : SysCode;
	[in] S Scale number
	[out] V In-range value
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	ScaleInRange : Integer;
	…
	InRange (1, ScaleInRange);
	function SelectScale (S : Integer) : SysCode;
	[in] S Scale number
	SysInvalidScale The scale specified by S does not exist; the current scale is not changed
	SysOK The function completed successfully

	SelectScale (1);
	function SetMode (S : Integer; M : Mode) : SysCode;
	[in] S Scale number
	[in] M Scale mode
	GrossMode Scale S is set to gross mode
	NetMode Scale S is set to net mode
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysInvalidMode The mode value M is not valid
	SysDeviceError The scale is reporting an error condition; the mode is not changed
	SysOK The function completed successfully

	SetMode (1, GrossMode or NetMode);
	function SetUnits (S : Integer; U : Units) : SysCode;
	[in] S Scale number
	[in] U Scale units
	Primary Primary units will be displayed on scale S
	Secondary Secondary units will be displayed on scale S
	Tertiary Tertiary units will be displayed on scale S
	SysInvalidRequest The scale specified by S is a legal for trade or industrial serial scale
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysInvalidUnits The units value U is not valid
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	SetUnits (1, Secondary);
	function ZeroScale (S : Integer) : SysCode;
	[in] S Scale number
	SysInvalidRequest The scale specified by S is a legal for trade serial scale
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysLFTViolation The zero operation would violate configured legal-for-trade restrictions for the specified scale; No zero is performed
	SysOutOfRange The zero operation would exceed the configured zeroing limit; No zero is acquired
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	ZeroScale (1);
	function GetCountBy (S : Integer; U : Units; VAR C : Real) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[out] C Count-by value
	SysInvalidScale The scale specified by S does not exist
	SysInvalidUnits The units specified by U is not recognized
	SysInvalidRequest The scale specified by S does not support this operation (serial scale)
	SysDeviceError The scale is reporting an error condition; C is still updated with the count-by value
	SysOK The function completed successfully

	CountBy : Real;
	...
	GetCountBy (1, Primary, CountBy);
	function GetGrads (S : Integer; VAR G : Integer) : SysCode;
	[in] S Scale number
	[out] G Grads value
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S does not support this operation (serial scale)
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	Grads : Integer;
	...
	GetGrads (1, Grads);
	function SetDFStages (S : Integer; S1 : Integer; S2 : Integer; S3 : Integer) : SysCode;
	[in] S Scale number
	[in] S1 Stage 1
	[in] S2 Stage 2
	[in] S3 Stage 3
	SysInvalidRequest Invalid type
	SysOutOfRange Values have not been assigned
	SysOK The function completed successfully

	SetDFStages (1, 4, 4, 4);
	function SetDFThresholds (S : Integer; Sensitivity : Integer; Threshold : Integer) : SysCode;
	[in] S Scale number
	[in] Sensitivity Sensitivity
	[in] Threshold Threshold
	SysInvalidRequest Invalid type
	SysOutOfRange Values have not been assigned
	SysOK The function completed successfully

	5.1.7 Calibration Data
	function GetLCCD (S : Integer; VAR V : Integer) : SysCode;
	[in] S Scale number
	[out] V Deadload count
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S is not an A/D-based scale
	SysOK The function completed successfully

	function GetLCCW (S : Integer; VAR V : Integer) : SysCode;
	[in] S Scale number
	[out] V Calibrated span count
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S is not an A/D-based scale
	SysOK The function completed successfully

	function GetLCCC (S : Integer; VAR V : Integer) : SysCode;
	[in] S Scale number
	[out] V Load cell count at capacity
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S is not an A/D-based scale
	SysOK The function completed successfully

	function GetWVal (S : Integer; VAR V : Real) : SysCode;
	[in] S Scale number
	[out] V Test weight value
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S is not an A/D-based scale
	SysOK The function completed successfully

	function GetZeroCount (S : Integer; VAR V : Integer) : SysCode;
	[in] S Scale number
	[out] V Deadload count
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S is not an A/D-based scale
	SysOK The function completed successfully

	function GetLiveZeroCounts (S : Integer; VAR V : Integer) : SysCode;
	[in] S Scale number
	[out] V Live zero count
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S is not an A/D-based scale
	SysOK The function completed successfully

	function GetPBZeroCounts (S : Integer; VAR V : Integer) : SysCode;
	[in] S Scale number
	[out] V Live zero count
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S is not an A/D-based scale
	SysOK The function completed successfully

	5.2 System Support
	function Date$ (DT : DateTime) : String;
	procedure DisableHandler (handler);
	SysInvalidRequest The specified handler does not exist
	SysOK The function completed successfully

	function DisplayIsSuspended : Integer;
	procedure EnableHandler (handler);
	SysInvalidRequest The specified handler does not exist
	SysOK The function completed successfully

	function EventChar : String;
	handler Port4CharReceived;
	strOneChar : string;
	begin
	strOneChar := EventChar;
	end;
	function EventConnection : string;
	function EventKey : Keys;
	handler KeyPressed;
	begin
	if EventKey = ClearKey then
	…
	end if;
	end;
	function EventPort : Integer;
	function EventString : String;
	function GetConsecNum : Integer;
	procedure GetDate (DT : DateTime; VAR Year : Integer; VAR Month : Integer; VAR Day : Integer);
	[in] DT DateTime variable name
	[out] Year Year
	[out] Month Month
	[out] Day Day

	function GetIqubeData(port_no : integer; dataType : IQValType; index : integer; VAR data : real) : SysCode;
	SysOutOfRange The array index is less than or equal to 0
	SysInvalidRequest The requested port is not configured as an iQUBE; The value cannot be returned due to the device configuration, trying to address load cell 17; Certain requests while the diagnostic screen is open or an invalid data type is requested
	SysDeviceError The scale is reporting an internal error
	SysOK The function completed successfully

	function GetIQData(Connection Name : string; dataType : IQValType; index : integer; VAR data : real) : SysCode;
	SysOutOfRange The array index is less than or equal to 0
	SysInvalidRequest The requested port is not configured as an iQUBE; The value cannot be returned due to the device configuration, trying to address load cell 17; Certain requests while the diagnostic screen is open or an invalid data type is requested
	SysDeviceError The scale is reporting an internal error
	SysOK The function completed successfully

	function GetKey (timeout : Integer);
	[in] timeout Time-out value

	this_key : Keys;
	…
	DisplayStatus ("Press [Enter] for Yes");
	this_key: = GetKey(0);
	if this_key = EnterKey then
	DisplayStatus ("Yes");
	else
	DisplayStatus ("No");
	end if;
	function GetSoftwareVersion : String;
	procedure GetTime (DT : DateTime; VAR Hour : Integer; VAR Minute : Integer; VAR Second : Integer);
	[in] DT DateTime variable name
	[out] Hour Hour
	[out] Minute Minute
	[out] Second Second

	function GetUID : String;
	procedure Hardware(var hw : HW_array_type);
	None
	function KeyPress (K : Keys) : SysCode;
	SysInvalidMode The indicator is not actually in weigh mode; The TestKey will return SysInvalidMode for all sub-modes of weigh mode (the contact screen) as well as any other mode (time & date entry, or open prompt)
	SysInvalidKey Any Invalid key; softkeys and Undefined Keys are considered invalid
	SysInvalidRequest Processing the key returns invalid or error
	SysOK The function completed successfully

	function LockKey (K : Keys) : SysCode;
	[in] K Key name
	SysInvalidKey The key specified is not valid
	SysOK The function completed successfully

	function LockKeypad : SysCode;
	SysPermissionDenied
	SysOK The function completed successfully

	procedure ProgramDelay (D : Integer);
	[in] D Delay time

	ProgramDelay(200); –Pauses the program for 2 seconds
	SysOK The function completed successfully
	SysDeviceError Function failed to reset

	procedure ResumeDisplay;
	function SetConsecNum (V : Integer) : SysCode;
	[in] V Consecutive number
	SysOutOfRange The value specified is not in the allowed range; The consecutive number is not changed
	SysOK The function completed successfully

	function SetDate (VAR DT : DateTime; VAR Year : Integer; VAR Month : Integer; VAR Day : Integer) : SysCode;
	[out] DT DateTime variable name
	[in] Year Year
	[in] Month Month
	[in] Day Day
	SysInvalidRequest Year, month, or day entry not valid
	SysOK The function completed successfully

	function SetSoftkeyText (K : Integer; S : String) : SysCode;
	[in] K Softkey number
	[in] S Softkey text
	SysInvalidRequest The value specified for K is less than 1 or greater than 10, or does not represent a configured softkey
	SysOK The function completed successfully

	function SetSystemTime (DT : DateTime);
	[in] DT System DateTime

	function SetTime (VAR DT : DateTime; Hour : Integer; Minute : Integer; Second : Integer) : SysCode;
	[out] DT DateTime variable name
	[in] Hour Hour
	[in] Minute Minute
	[in] Second Second
	SysInvalidRequest Hour or minute entry not valid
	SysOK The function completed successfully

	function SetUID (newid : String);
	[in] newid Unit identifier
	SysOK Started Successfully
	SysInvalidFtpConfig FTP Server is not enabled in Features -> FTP -> FTP Enabled
	SysInvalidNetworkConfig Ethernet is not enabled in Communications -> Ethernet -> Enabled
	SysFtpStartFailed ftp server did not start (not password related)

	function STick : Integer;
	SysOk Stopped Successfully

	procedure SuspendDisplay;
	function SystemTime : DateTime;
	function Time$ (DT : DateTime) : String;
	function UnlockKey (K : Keys) : SysCode;
	[in] K Key name
	SysInvalidKey The key specified is not valid
	SysOK The function completed successfully

	function UnlockKeypad : SysCode;
	SysPermissionDenied
	SysOK The function completed successfully

	procedure WaitForEntry (I : Integer);
	[in] I Wait time value

	5.3 Serial I/O
	function Print (F : PrintFormat) : SysCode;
	[in] F Print format
	GrossFmt Gross format
	NetFmt Net format
	TrWInFmt Truck weigh-in format
	TrRegFmt Truck register format (truck IDs and tare weights)
	TrWOutFmt Truck weigh-out format
	SPFmt Setpoint format
	AccumFmt Accumulator format
	AuxFmtx Auxiliary format (x = 1 - 20)
	GrossFmt Gross format
	NetFmt Net format
	SPFmt Setpoint format
	AccumFmt Accumulator format
	PrintFormat1 Print format 1
	PrintFormat2 Print format 2
	PrintFormat3 Print format 3
	PrintFormat4 Print format 4
	SysInvalidRequest The print format specified by F does not exist
	SysQFull The request could not be processed because the print queue is full
	SysOK The function completed successfully

	Fmtout : PrintFormat;
	…
	Fmtout := NetFmt
	Print (Fmtout);
	procedure Send (P : Integer; <number>);
	[in] P Serial port number
	[in] <number> The integer or real number to output

	Send (Port1, 123.55); –sends "<42><F7><19><9A>" (without the quotes or <> symbols) to Port 1
	where:
	<42> = 42 hex (66 decimal)
	<F7> = F7 hex (247 decimal)
	<19> = 19 hex (25 decimal)
	<9A> = 9A hex (154 decimal)
	Send (1, 4276803); –sends "<00>ABC" (without the quotes) to Port 1 - where <00> is an ASCII nul
	procedure SendChr (P : Integer; character : Integer);
	[in] P Serial port number
	[in] character The decimal value of the character to transmit

	SendChr (1, 65); –sends upper-case "A" (decimal 65) to Port 1
	function SendChrArray (P : Integer; data : ChrArray; Length : Integer) : SysCode;
	[in] P Serial port number
	[in] ChrArray The array of characters to output
	[in] Length The number of bytes to transmit
	SysOutOfRange Length < 1 or > 100
	SysInvalidPort The port number specified for P is not valid
	SysOK The function completed successfully

	procedure SendNull (P : Integer);
	[in] P Serial port number

	SendNull (1); –sends an ASCII null character (decimal 00) to Port 1
	function SetPrintText (fmt_num : Integer ; text : String) : Syscode;
	[in] fmt_num User-specified format number
	[in] text Print format text
	SysOutOfRange The text is more than 16 characters
	SysInvalidRequest The specified format number is out of the range of 1–99
	SysOK The function completed successfully

	SetPrintText(1, "User Pgm. Text");
	function StartStreaming (P : Integer) : SysCode;
	[in] P Serial port number
	SysInvalidPort The port number specified for P is not valid
	SysInvalidRequest The port specified for P is not configured for streaming
	SysOK The function completed successfully

	StartStreaming (1);
	function StartStreaming (S : Integer) : SysCode;
	[in] S Stream format number (1-4)
	SysInvalidRequest The stream format specified by S is not configured for streaming
	SysOK The function completed successfully

	StartStreaming (1);
	function StopStreaming (P : Integer) : SysCode;
	[in] P Serial port number
	SysInvalidPort The port number specified for P is not valid
	SysInvalidRequest The port specified for P is not configured for streaming
	SysOK The function completed successfully

	StopStreaming (1);
	function StopStreaming (S : Integer) : SysCode;
	[in] S Stream format number (1-4)
	SysInvalidRequest The stream format specified by S is not configured for streaming
	SysOK The function completed successfully

	StopStreaming (1);
	procedure Write (P : Integer; <arg-list>);
	[in] P Serial port number
	[in] arg_list Print text

	Write (1, "This is a test.");
	procedure Write (P : Integer; <arg-list>);
	[in] P Serial port number
	[in] arg_list Print text

	WriteLn (1, "This is another test.");
	procedure WriteOut (C : String; <arg-list>);
	[in] C Connection port number
	[in] arg_list Print text

	procedure WriteOutLn (C : String; <arg-list>);
	[in] C Connection port number
	[in] arg_list Print text

	5.3.1 880 Port Numbering
	Function(Connection : String) : Syscode;
	[In] Connection This needs to be set to “ADVPRN”
	SysOK The function completed successfully
	if StartDocument("ADVPRN") = SysOk then
	Writeoutln("ADVPRN","String data to print");
	else
	DisplayStatus("Printer Error");
	end if;
	if EndDocument("ADVPRN") = SysOk then
	DisplayStatus("Document Printed");
	else
	DisplayStatus("Printer Error");
	end if;

	5.4 Program Scale
	function SubmitData (scale : Integer; weight : Real; gn : Mode; units : UnitType; tare : Real) : SysCode;
	SysInvalidScale The scale is not set up as a program scale
	SysOK The function completed successfully

	function SubmitDSPData(scale : integer; weight : real; units : string; dp : Decimal_Type) : SysCode;
	SysInvalidScale The scale is not set up as a program scale
	SysOK The function completed successfully

	5.5 Setpoints and Batching
	function DisableSP (SP : Integer) : SysCode;
	[in] SP Setpoint number
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysBatchRunning Setpoint SP cannot be disabled while a batch is running
	SysInvalidRequest The setpoint specified by SP cannot be enabled or disabled
	SysOK The function completed successfully

	DisableSP (4);
	function EnableSP (SP : Integer) : SysCode;
	[in] SP Setpoint number
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysBatchRunning Setpoint SP cannot be enabled while a batch is running
	SysInvalidRequest The setpoint specified by SP cannot be enabled or disabled
	SysOK The function completed successfully

	EnableSP (4);
	function GetBatchingMode : BatchingMode;
	Off Batching mode is off
	Auto Batching mode is set to automatic
	Manual Batching mode is set to manual

	function GetBatchStatus (VAR S : BatchStatus) : SysCode;
	[out] S Batch status
	BatchComplete The batch is complete
	BatchStopped The batch is stopped
	BatchRunning A batch routine is in progress
	BatchPaused The batch is paused
	SysInvalidRequest The BATCHNG configuration parameter is set to OFF
	SysOK The function completed successfully

	function GetCurrentSP (VAR SP : Integer) : Syscode;
	[out] SP Setpoint number
	SysInvalidRequest The BATCHNG configuration parameter is set to OFF
	SysBatchNotRunning No batch routine is running
	SysOK The function completed successfully

	CurrentSP : Integer;
	…
	GetCurrentSP (CurrentSP);
	WriteLn (1, "Current setpoint is " + IntegerToString(CurrentSP,0);
	function GetSPBand (SP : Integer; VAR V : Real) : SysCode;
	[in] SP Setpoint number
	[out] V Band value
	SysInvalidSetpoint The setpoint number specified by SP is less than 1 or greater than the maximum number of setpoints
	SysInvalidRequest The setpoint specified by SP has no band value (BANDVAL) parameter
	SysOK The function completed successfully.

	SP7Bandval : Real;
	…
	GetSPBand (7, SP7BAndval);
	WriteLn (1, "Current Band Value of SP7 is " + RealToString(SP7Bandval,0,2));
	function GetSPCaptured (SP : Integer; VAR V : Real) : SysCode;
	[in] SP Setpoint number
	[out] V Captured weight value
	SysInvalidSetpoint The setpoint number specified by SP is less than 1 or greater than the maximum number of setpoints
	SysInvalidRequest The setpoint is off and has no captured value
	SysOK The function completed successfully

	function GetSPCount (SP : Integer; VAR Count : Integer) : SysCode;
	[in] SP Setpoint number
	[out] Count Count value
	SysInvalidSetpoint The setpoint number specified by SP is less than 1 or greater than the maximum number of setpoints
	SysInvalidRequest The specified setpoint is not a DINCNT setpoint
	SysOK The function completed successfully

	function GetSPDuration (SP : Integer; VAR DT : DateTime) : SysCode;
	[in] SP Setpoint number
	[out] DT Setpoint trip duration
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no DURATION parameter
	SysOK The function completed successfully

	SP3DUR : DateTime;
	…
	GetSPTime (3, SP3DUR);
	WriteLn (Port1, "Current Trip Duration of SP3 is", SP3DUR);
	function GetSPHyster (SP : Integer; VAR V : Real) : SysCode;
	[in] SP Setpoint number
	[out] V Hysteresis value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no hysteresis HYSTER) parameter
	SysOK The function completed successfully

	SP5Hyster : Real;
	…
	GetSPHyster (5, SP5Hyster);
	WriteLn (1, "Current Hysteresis Value of SP5 is " + RealToString(SP5Hyster,0,2));
	function GetSPNSample (SP : Integer; VAR N : Integer) : SysCode;
	[in] SP Setpoint number
	[out] N Sample value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no NSAMPLE parameter
	SysOK The function completed successfully

	SP5NS : Integer;
	…
	GetSPNSample (5, SP5NS);
	WriteLn (1, "Current NSample Value of SP5 is " + IntegerToString(SP5NS,0));
	function GetSPPreact (SP : Integer; VAR V : Real) : SysCode;
	[in] SP Setpoint number
	[out] V Preact value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no preact (PREACT) parameter
	SysOK The function completed successfully

	SP2Preval : Real;
	…
	GetSPPreact (2, SP2Preval);
	WriteLn (1, "Current Preact Value of SP2 is " + RealToString(SP2Preval,0,2));
	function GetSPPreCount (SP : Integer; VAR Count : Integer) : SysCode;
	[in] SP Setpoint number
	[out] Count Preact count value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP is not DINCNT type parameter
	SysOK The function completed successfully

	SP3PCount : Integer;
	…
	GetSPPreCount (3, SP3PCount);
	WriteLn (1, "Current Preact Learn Value of SP3 is " + IntegerToString(SP3PCount,0));
	function GetSPTime (SP : Integer; VAR DT : DateTime) : SysCode;
	[in] SP Setpoint number
	[out] DT Current setpoint trip time
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no TIME parameter
	SysOK The function completed successfully

	SP2TIME : DateTime;
	…
	GetSPTime (2, SP2TIME);
	WriteLn (Port1, "Current Trip Time of SP2 is", SP2TIME);
	function GetSPValue (SP : Integer; VAR V : Real) : SysCode;
	[in] SP Setpoint number
	[out] V Setpoint value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no VALUE parameter
	SysOK The function completed successfully

	SP4Val : Real;
	…
	GetSPValue (4, SP4Val);
	WriteLn (1, "Current Value of SP4 is " + RealToString(SP4Val,0,2));
	function GetSPVover (SP : Integer; VAR V : Real) : SysCode;
	[in] SP Setpoint number
	[out] V Overrange value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no VOVER parameter
	SysOK The function completed successfully

	SP3VOR : Real;
	…
	GetSPVover (3, SP3VOR);
	WriteLn (1, "Current Overrange Value of SP3 is " + RealToString(SP3VOR,0,2));
	function GetSPVunder (SP : Integer; VAR V : Real) : SysCode;
	[in] SP Setpoint number
	[out] V Underrange value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no VUNDER parameter
	SysOK The function completed successfully

	SP4VUR : Real;
	…
	GetSPVunder (4, SP4VUR);
	WriteLn (1, "Current Underrange Value of SP4 is " + RealToString(SP4VUR,0,2));
	function PauseBatch : SysCode;
	SysPermissionDenied The BATCHNG configuration parameter is set to OFF
	SysBatchRunning No batch routine is running
	SysOK The function completed successfully

	function ResetBatch : SysCode;
	SysPermissionDenied The BATCHNG configuration parameter is set to OFF
	SysBatchRunning No batch routine is running
	SysOK The function completed successfully

	function SavesetpointUpdates;
	function SetBatchingMode (M : BatchingMode) : SysCode;
	[in] SP Setpoint number
	[in] M Batching mode
	Off Batching mode is off
	Auto Batching mode is set to automatic
	Manual Batching mode is set to manual
	SysInvalidMode The batching mode specified by M is not valid
	SysOK The function completed successfully

	function SetSPBand (SP : Integer; V : Real) : SysCode;
	[in] SP Setpoint number
	[in] V Band value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no band value (BANDVAL) parameter
	SysBatchRunning The value cannot be changed because a batch process is currently running
	SysOK The function completed successfully

	SP7Bandval : Real;
	…
	SP7Bandval := 10.0
	SetSPBand (7, SP7Bandval);
	function SetSPCount (SP : Integer; Count : Integer) : SysCode;
	[in] SP Setpoint number
	[in] Count Count value
	SysInvalidSetpoint The setpoint number specified by SP is less than 1 or greater than the maximum number of setpoints
	SysInvalidRequest The specified setpoint is not a DINCNT setpoint
	SysOK The function completed successfully

	function SetSPDuration (SP : Integer; DT : DateTime) : SysCode;
	[in] SP Setpoint number
	[in] DT Setpoint trip duration
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no DURATION parameter
	SysBatchRunning The value cannot be changed because a batch process is currently running
	SysOutOfRange The value specified for DT is not in the allowed range for setpoint SP
	SysOK The function completed successfully

	SP3DUR : DateTime;
	…
	SP3DUR := 00:3:15
	SetSPDuration (3, SP3DUR);
	function SetSPHyster (SP : Integer; V : Real) : SysCode;
	[in] SP Setpoint number
	[in] V Hysteresis value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no hysteresis (HYSTER) parameter
	SysBatchRunning The value cannot be changed because a batch process is currently running
	SysOK The function completed successfully

	SP5Hyster : Real;
	…
	SP5Hyster := 15.0;
	SetSPHyster (5, SP5Hyster);
	function SetSPNSample (SP : Integer; N : Integer) : SysCode;
	[in] SP Setpoint number
	[in] N Sample value
	SysInvalidSetpoint The setpoint specified by SP does not exist.
	SysInvalidRequest The setpoint specified by SP has no NSAMPLE parameter.
	SysBatchRunning The value cannot be changed because a batch process is currently running.
	SysOutOfRange The value specified for N is not in the allowed range for setpoint SP.
	SysOK The function completed successfully.

	SP5NS : Integer;
	…
	SP5NS := 10
	SetSPNSample (5, SP5NS);
	function SetSPPreact (SP : Integer; V : Real) : SysCode;
	[in] SP Setpoint number
	[in] V Preact value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no preact (PREACT) parameter
	SysBatchRunning The value cannot be changed because a batch process is currently running
	SysOK The function completed successfully

	SP2PreVal : Real;
	…
	SP2PreVal := 30.0;
	SetSPPreact (2, SP2PreVal);
	function SetSPPreCount (SP : Integer; Count : Integer) : SysCode;
	[in] SP Setpoint number
	[in] Count Preact count value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP is not type DINCNT or Count is less than 0
	SysOK The function completed successfully

	SP3PCount : Integer;
	…
	SP3Pcount := 4;
	SetSPPreCount (3, SP3PCount);
	function SetSPTime (SP : Integer; DT : DateTime) : SysCode;
	[in] SP Setpoint number
	[in] DT Setpoint trip time
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no TIME parameter
	SysBatchRunning The value cannot be changed because a batch process is currently running
	SysOutOfRange The value specified for DT is not in the allowed range for setpoint SP
	SysOK The function completed successfully

	SP2TIME : DateTime;
	…
	SP2TIME := 08:15:00
	SetSPTime (2, SP2TIME);
	function SetSPTime (SP : Integer; DT : DateTime) : SysCode;
	[in] SP Setpoint number
	[in] DT Setpoint trip time
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no TIME parameter
	SysBatchRunning The value cannot be changed because a batch process is currently running
	SysOutOfRange The value specified for DT is not in the allowed range for setpoint SP
	SysOK The function completed successfully

	SP2TIME : DateTime;
	…
	SetTime (SP2Time, 08, 15, 00);
	SetSPTime (2, SP2Time);
	function SetSPValue (SP : Integer; V : Real) : SysCode;
	[in] SP Setpoint number
	[in] V Setpoint value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no VALUE parameter
	SysBatchRunning The value cannot be changed because a batch process is currently running
	SysOutOfRange The value specified for V is not in the allowed range for setpoint SP
	SysOK The function completed successfully

	SP4Val : Real;
	…
	SP4Val := 350.0;
	SetSPValue (4, SP4Val);
	function SetSPVover (SP : Integer; V : Real) : SysCode;
	[in] SP Setpoint number
	[in] V Overrange value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no VOVER parameter
	SysOK The function completed successfully

	SP3VOR : Real;
	…
	SP3VOR := 35.5
	SetSPVover (3, SP3VOR);
	function SetSPVunder (SP : Integer; V : Real) : SysCode;
	[in] SP Setpoint number
	[in] V Underrange
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no VUNDER parameter
	SysOK The function completed successfully

	SP4VUR : Real;
	…
	SP4VUR := 26.4
	SetSPVunder (4, SP4VUR);
	function StartBatch : SysCode;
	SysPermissionDenied The BATCHNG configuration parameter is set to OFF
	SysBatchRunning A batch process is already in progress
	SysOK The function completed successfully

	function StopBatch : SysCode;
	SysPermissionDenied The BATCHNG configuration parameter is set to OFF
	SysBatchNotRunning No batch process is running
	SysOK The function completed successfully

	5.6 Digital I/O Control
	function GetDigAll (S : Integer; VAR V : Integer) : SysCode;
	[in] S Slot number
	[out] V Digital IO status
	SysInvalidRequest The slot does not contain a valid DIO Card
	SysOK SysOK The function completed successfully

	dioStatus : integer;
	GetDigAll(0, dioStatus);
	function GetDigin (S : Integer; D : Integer; VAR V : Integer) : SysCode;
	[in] S Slot number
	[in] D Bit number
	[out] V Digital input status
	SysInvalidRequest The slot and bit assignment specified is not a valid digital input
	SysOK The function completed successfully

	DIGINS0B3 : Integer;
	…
	GetDigin (0, 3, DIGINS0B3);
	WriteLn (1, "Digin S0B3 status is " + IntegerToString(DIGINS0B3,0));
	function GetDigout (S : Integer; D : Integer; VAR V : Integer) : SysCode;
	[in] S Slot number
	[in] D Bit number
	[out] V Digital output status
	SysInvalidRequest The slot and bit assignment specified is not a valid digital output
	SysOK The function completed successfully

	DIGOUTS0B2 : Integer;
	…
	GetDigout (0, 2, DIGOUTS0B2);
	WriteLn (1, "Digout S0B2 status is " + IntegerToString(DIGOUTS0B2,0));
	[in] S Slot number
	SysInvalidRequest The slot and bit assignment specified is not a valid digital output
	SysOK The function completed successfully

	function SetDigout (S : Integer; D : Integer; V : Integer) : SysCode;
	[in] S Slot number
	[in] D Bit number
	[in] V Digital output status
	SysInvalidRequest The slot and bit assignment specified is not a valid digital output
	SysOutOfRange The value V must be 0 (inactive) or 1 (active)
	SysOK The function completed successfully

	DIGOUTS0B2 : Integer;
	…
	DIGOUTS0B2 := 0;
	SetDigout (0, 2, DIGOUTS0B2);
	[in] S Slot number that the DIO card is in
	[in] I Bitmasked integer for all outputs (see bitmask explanation below)
	SysInvalidRequest The slot and bit assignment specified is not a valid digital output
	SysOK The function completed successfully

	5.7 Fieldbus Data
	function GetFBStatus (fieldbus_no : Integer; scale_no : Integer; VAR status : Integer) : SysCode;
	[in] fieldbus_no Fieldbus number
	[in] scale_no Scale number
	[out] status Fieldbus status
	SysInvalidRequest
	SysOK The function completed successfully

	function GetImage (fieldbus_no : Integer; VAR data : BusImage) : SysCode;
	[in] fieldbus_no Fieldbus number
	[out] BusImage Bus image
	SysInvalidRequest
	SysOK The function completed successfully

	function GetImageReal (fieldbus_no : Integer; VAR data : BusImageReal) : SysCode;
	[in] fieldbus_no Fieldbus number
	[out] BusImageReal Bus image
	SysInvalidRequest
	SysOK The function completed successfully

	function SetImage (fieldbus_no : Integer; data : BusImage) : SysCode;
	[in] fieldbus_no Fieldbus number
	[in] BusImage Bus image
	SysInvalidRequest
	SysOK The function completed successfully

	function SetImage (fieldbus_no : Integer; data : BusImageReal) : SysCode;
	[in] fieldbus_no Fieldbus number
	[in] BusImageReal Bus image
	SysInvalidRequest
	SysOK The function completed successfully

	5.8 Analog Output Operation
	function SetAlgout (S : Integer; P : Real) : SysCode;
	[in] S Slot number
	[in] P Analog output percentage value
	SysInvalidPort The specified slot (S) is not a valid analog output
	SysInvalidRequest The analog output is not configured from program control
	SysOK The function completed successfully

	5.9 Email
	<Self Explanatory>
	SysInvalidToAddress Supplied to address is not in the correct format; This does not check if the to address actually exists only if the format is correct
	SysInvalidFromAddress Supplied from address is not in the correct format; This does not check if the to address actually exists only if the format is correct
	SysInvalidSubject Supplied subject is not within length limits; Subject length must be greater than 0 and less than or equal to 128 characters
	SysInvalid NetworkConfig There is an issue with the email configuration in the 1280 setup; Possibilities include incorrect port, incorrect address, invalid username/password and connectivity issues
	function SendEmailFormat (TO : String; FROM : string; SUBJECT : string; PF : PrintFormat) : SysCode;
	<Self Explanatory>
	SysInvalidToAddress Supplied to address is not in the correct format; This does not check if the to address actually exists only if the format is correct
	SysInvalidFromAddress Supplied from address is not in the correct format; This does not check if the to address actually exists only if the format is correct
	SysInvalidSubject Supplied subject is not within length limits; Subject length must be greater than 0 and less than or equal to 128 characters
	SysInvalid NetworkConfig There is an issue with the email configuration in the 1280 setup; Possibilities include incorrect port, incorrect address, invalid username/password and connectivity issues

	5.10 Pulse Input Operation
	function ClearPulseCount (S : Integer) : SysCode;
	[in] S Slot number
	SysInvalidCounter The specified counter (S) is not a valid pulse input
	SysOK The function completed successfully

	function PulseCount (S : Integer; VAR C : Integer) : SysCode;
	[in] S Slot number
	[out] C Current pulse count
	SysInvalidCounter The specified counter (S) is not a valid pulse input
	SysOK The function completed successfully

	function PulseRate (S : Integer; VAR R : Integer) : SysCode;
	[in] S Slot number
	[out] C Current pulse rate
	SysInvalidCounter The specified counter (S) is not a valid pulse input
	SysOK The function completed successfully

	5.11 Display Operation
	procedure ClosePrompt;
	procedure DisplayStatus (msg : String);
	[in] msg Display text

	function GetEntry : String;
	function PromptUser (msg : String) : SysCode;
	[in] msg Prompt text
	SysRequestFailed The prompt could not be opened
	SysOK The function completed successfully

	function PromptPassword (msg : String) : SysCode;
	[in] msg Prompt text
	SysRequestFailed The prompt could not be opened
	SysOK The function completed successfully

	function PromptNumeric (msg : String) : SysCode;
	[in] msg Prompt text
	SysRequestFailed The prompt could not be opened
	SysOK The function completed successfully

	function SelectScreen (N : Integer) : SysCode;
	[in] N Screen number
	SysInvalidRequest The value specified for N is less than 1 or greater than 10 (920i) or 99 (1280)
	SysOK The function completed successfully

	procedure SetEntry (S : String);
	procedure UpdateEntry (userInput : string);
	[in] userInput string value collected from external keyboard to update the data entry box in a prompt

	5.12 Display Programming
	function BusyShow : SysCode;
	SysOK The function completed successfully

	function BusyHide : SysCode;
	SysOK The function completed successfully
	[in] source IP address in quotes (“192.168.10.2”)
	[in] filepath name of the file without an extension (“TruckPic”)

	SysOK The function completed successfully

	procedure ClearGraph (VAR graph_array : DisplayImage) : SysCode;
	[out] graph_array Graph identifier

	function DrawGraphic (gr_num : Integer; x_start : Integer; y_start : Integer; bitmap : DisplayImage; color : Color_type) : SysCode;
	[in] gr_num Graphic number
	[in] x_start X-axis starting pixel location
	[in] y_start Y-axis starting pixel location
	[in] bitmap Graphic bitmap
	[in] color Color type
	SysDeviceError The value specified for gr_num is greater than 100
	SysOK The function completed successfully

	function GraphCreate (graphic_no : Integer; bitmap : DisplayImage; color : Color_type; kind : GraphType) : SysCode;
	[in] graphic_no Graphic number
	[in] bitmap Bitmap
	[in] color Graphic color
	[in] kind Graphic kind
	SysInvalidRequest The DisplayImage specified by bitmap does not exist
	SysOK The function completed successfully

	G_Graph1 : DisplayImage;
	result : Syscode;
	begin
	result := GraphCreate(1, G_Graph1, Black, Bar);
	if result = SysOK then
	result :=GraphInit(71,30,60,110,240);
	end if;
	end;
	function GraphInit (graphic_no : Integer; x_start : Integer; y_start : Integer; height : Integer; width : Integer) : SysCode;
	[in] graphic_no Graphic number
	[in] x_start X-axis starting pixel location
	[in] y_start Y-axis starting pixel location
	[in] height Graphic height
	[in] width Graphic width
	SysInvalidRequest The DisplayImage specified by bitmap does not exist
	SysOutOfRange Specified parameters exceed display height or width, or are too small to accommodate the graphic
	SysDeviceError Internal error
	SysOK The function completed successfully

	G_Graph1 : DisplayImage;
	result : Syscode;
	begin
	result := GraphCreate(1, G_Graph1, Black, Bar);
	if result = SysOK then
	result :=GraphInit(71,30,60,110,240);
	end if;
	end;
	function GraphPlot (graphic_no : Integer; y_value : Real; width : Integer; color : Color_type) : SysCode;
	[in] graphic_no Graphic number
	[in] y_value Pixel height of histogram
	[in] color Color type
	[in] width Pixel width of moving bar
	SysInvalidRequest Graph not initialized
	SysOK The function completed successfully

	result : Syscode;
	weight : real;
	begin
	GetGross(1,Primary,weight);
	result := GraphPlot(1, weight, 1, Black);
	end;
	function GraphScale (graphic_no : Integer; x_min : Real; x_max : Real; y_min : Real; y_max : Real) : SysCode;
	[in] graphic_no Graphic number
	[in] x_min Minimum x-axis value
	[in] x_max Maximum x-axis value)
	[in] y_min Minimum y-axis value
	[in] y_max Maximum y-axis value
	SysInvalidRequest Graph not initialized
	SysOutOfRange A min value (x_min or y_min) is greater than its specified max value
	SysOK The function completed successfully

	GraphScale(1, 10.0, 50000.0, 0.0, 10000.0);
	function SetBargraphLevel (W : Integer; Level : Integer) : SysCode;
	[in] W Bargraph widget number
	[in] Level Bargraph widget level
	SysInvalidWidget The bargraph widget specified by W does not exist
	SysOK The function completed successfully

	function SetLabelText (W : Integer; S : String) : SysCode;
	[in] W Label widget number
	[in] S Label widget text
	SysInvalidWidget The label widget specified by W does not exist
	SysOK The function completed successfully

	function SetNumericValue (W : Integer; V : Real) : SysCode;
	[in] W Numeric widget number
	[in] V Numeric widget value
	SysInvalidWidget The numeric widget specified by W does not exist
	SysOK The function completed successfully

	function SetSymbolState (W : Integer; S : Integer) : SysCode;
	[in] W Symbol widget number
	[in] S Symbol widget state
	SysInvalidWidget The symbol widget specified by W does not exist
	SysOK The function completed successfully

	function SetWidgetVisibility (W : Integer; V : OnOffType) : SysCode;
	[in] W Widget number
	[in] V Widget visibility
	SysInvalidWidget The widget specified by W does not exist
	SysOK The function completed successfully

	function SetWidgetColor (W : Integer; C : String) : SysCode;
	[in] W Widget number
	[in] C Widget color
	SysInvalidWidget Requested widget could not be found
	SysInvalidRequest No string provided for color parameter
	SysOk The function completed successfully

	function SetSymbolColor (W : Integer; C : Integer) : SysCode;
	[in] W Widget number
	[in] C Symbol color, supports 16 colors (VGA)
	SysInvalidWidget Requested widget could not be found
	SysInvalidRequest Invalid color
	SysOk The function completed successfully

	function SetImageWidgetPath (W : Integer; C : String) : SysCode;
	[in] W Widget image
	[in] C Image path
	SysInvalidWidget Requested widget could not be found
	SysOk The function completed successfully

	function SetMenuBarColor (C : String) : SysCode;
	[in] C Color type, uses HTML RGB style
	SysInvalidRequest Invalid type
	SysOk The function completed successfully

	function SetBGColor (C : string; T : string) : SysCode;
	[in] T Text color
	[in] C Background color - name or HTML RGB Style
	SysInvalidRequest Invalid type
	SysOk The function completed successfully

	function SetScaleSymbols (C : String) : SysCode;
	[in] C Color type (black and white only)
	SysInvalidRequest Invalid type
	SysOk The function completed successfully

	5.12.1 Setting Widget Colors
	5.12.2 Image Widget Icons
	5.12.3 Display Charting
	[in] widget_no Chart widget number
	SysOK The function completed successfully
	SysInvalidWidget Requested widget could not be found
	Function ChartInit (widget_no : Integer; fillColor : String; lineColor : String; pointColor : String; maxPoints : Integer) : SysCode;
	[in] widget_no Chart widget number
	[in] fillColor Html color for the fill area of the chart
	[in] lineColor Html color for the line between points, or the outer edge of the bar
	[in] pointColor Html color for data points on the line chart. Value is ignored on a bar chart
	[in] maxPoints Max number of points on the chart; The value is capped at 200 points; If the number of inserted points exceeds this value, the earliest points on the chart are removed
	SysOK The function completed successfully

	function ChartInitStatic (widget_no : Integer; fillColor : String; lineColor : String; pointColor : String; maxPoints : Integer) : SysCode;
	[in] widget_no Chart widget number
	[in] fillColor Html color for the fill area of the chart
	[in] lineColor Html color for the line between points, or the outer edge of the bar
	[in] pointColor Html color for data points on the line chart; Value is ignored on a bar chart
	[in] maxPoints Max number of points on the chart; The value is capped at 8000 points; If the number of inserted points exceeds this value, the earliest points on the chart are removed
	SysOK The function completed successfully

	function ChartPlot (widget_no : Integer; label : String; value : real) : SysCode;
	[in] widget_no Chart widget number
	[in] label Label or name of the data point
	[in] value Value of the data point
	SysOK The function completed successfully

	function ChartSetAnimation (widget_no : Integer; enabled : BooleanType) : SysCode;
	[in] widget_no Chart widget number
	SysOK The function completed successfully

	function ChartRender (widget_no : Integer) : SysCode;
	[in] widget_no Chart widget number
	SysOK The function completed successfully

	function ChartInsertToExisting(widget_no : Integer; label : String; value : real) : SysCode;
	[in] widget_no Chart widget number
	[in] label Label or name of the data point
	[in] value Value of the data point
	SysOK The function completed successfully
	[in] widget_no Chart widget number
	[in] size Point size of the dots in the chart

	SysOK The function completed successfully
	SysInvalidRequest Invalid point size
	SysInvalidWidget Requested widget could not be found

	5.13 Database Operation
	function <DB>.Add : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysDatabaseFull There is no space in the specified database for this record
	SysOK The function completed successfully

	function <DB>.Clear : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysOK The function completed successfully

	function <DB>.Delete : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database
	SysOK The function completed successfully

	function <DB>.FindFirst (I : Integer) : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database
	SysNoSuchColumn The column specified by I does not exist
	SysOK The function completed successfully

	function <DB>.FindLast (I : Integer) : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database
	SysNoSuchColumn The column specified by I does not exist
	SysOK The function completed successfully

	function <DB>.FindNext : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database
	SysOK The function completed successfully

	function <DB>.FindLast : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database
	SysOK The function completed successfully

	function <DB>.GetFirst : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database

	SysOK The function completed successfully
	function <DB>.GetLast : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database
	SysOK The function completed successfully

	function <DB>.GetNext : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database
	SysOK The function completed successfully

	function <DB>.GetPrev : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database
	SysOK The function completed successfully

	function <DB>.Sort (I : Integer) : SysCode;
	[in] I Column number to sort by
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database
	SysOK The function completed successfully

	function <DB>.Update : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database

	SysOK The function completed successfully
	5.13.1 iRite SQL Feature
	function DBExec (S : String; var R : Integer) : SysCode;
	[in] S SQL query
	[out] R Result set identifier, 0 if there is no result set from the query
	SysInvalidRequest Too many active result sets
	SysPermissionDenied An attempt was made to perform a restricted actions (create, alter or drop table)
	SysRequestFailed SQL query could not be executed
	SysOk The function completed successfully

	function DBNext (R : Integer) : SysCode;
	[in] R Result set identifier
	SysInvalidRequest Invalid result set identifier
	SysNoSuchRecord There are no more records in the result set
	SysRequestFailed Advance could not be completed
	SysOk The function completed successfully

	function DBColumnInt (R : Integer; C : Integer; var V : Integer) : SysCode;
	[in] R Result set identifier
	[in] C Column number
	[out] V Value of the requested column in the result set
	SysInvalidRequest Invalid result set identifier
	SysNoSuchColumn Invalid column number
	SysRequestFailed Incorrect column type
	SysOk The function completed successfully

	function DBColumnInt (R : Integer; C : Integer; var V : Real) : SysCode;
	[in] R Result set identifier
	[in] C Column number
	[out] V Value of the requested column in the result set
	SysInvalidRequest Invalid result set identifier
	SysNoSuchColumn Invalid column number
	SysRequestFailed Incorrect column type
	SysOk The function completed successfully

	function DBColumnInt (R : Integer; C : Integer; var V : String) : SysCode;
	[in] R Result set identifier
	[in] C Column number
	[out] V Value of the requested column in the result set
	SysInvalidRequest Invalid result set identifier
	SysNoSuchColumn Invalid column number
	SysRequestFailed Incorrect column type
	SysOk The function completed successfully

	function DBColumnDT (R : Integer; C : Integer; var V : DateTime) : SysCode;
	[in] R Result set identifier
	[in] C Column number
	[out] V Value of the requested column in the result set
	SysInvalidRequest Invalid result set identifier
	SysNoSuchColumn Invalid column number
	SysRequestFailed Incorrect column type
	SysOk The function completed successfully

	function DBFinalize (R : Integer) : SysCode;
	[in] R Result set identifier
	SysInvalidRequest Invalid result set identifier
	SysOk The function completed successfully

	function DBErrMsg () : String;
	function DTToString (D : DateTime) : SysCode;
	[in] D Date Time value to be formatted

	5.14 Timer Control
	function ResetTimer (T : Integer) : Syscode;
	[in] T Timer number
	SysInvalidTimer The timer specified by T is not a valid timer
	SysOK The function completed successfully

	function ResumeTimer (T : Integer) : Syscode;
	[in] T Timer number
	SysInvalidTimer The timer specified by T is not a valid timer
	SysOK The function completed successfully

	function SetTimer (T : Integer ; V : Integer) : Syscode;
	[in] T Timer number
	[in] V Timer value
	SysInvalidRequest The specified time-out value is less than 0
	SysInvalidTimer The timer specified by T is not a valid timer
	SysOK The function completed successfully

	function SetTimerDigOut (T : Integer ; S : Integer ; D: Integer) : Syscode;
	[in] T Timer number
	[in] S Digital I/O slot number
	[in] D Digital I/O bit number
	SysInvalidRequest The slot or bit number specified is not a valid digital output
	SysInvalidTimer The timer specified by T a not valid timer
	SysOK The function completed successfully

	SetTimer(1,100); –Set value of Timer1 to 100 (1 second)
	SetTimerMode(1,TimerDigoutOn); –Set timer mode to turn on the digital output
	SetTimerDigout(1,0,1); –Set the digital output to control (slot 0, bit 1)
	StartTimer(1); –Start timer
	function SetTimerMode (T : Integer ; M : TimerMode) : Syscode;
	[in] T Timer number
	[in] M Timer mode
	TimerOneShot Timer mode is set to one-shot
	TimerContinuous Timer mode is set to continuous
	TimerDigOutOff One-shot timer sets a digital output off when the timer expires
	TimerDigOutOn One-shot timer sets a digital output on when the timer expires
	SysInvalidTimer The timer specified by T is not a valid timer
	SysInvalidMode The timer mode specified by M is not a valid timer mode
	SysOK The function completed successfully

	function StartTimer (T : Integer) : Syscode;
	[in] T Timer number
	SysInvalidTimer The timer specified by T is not a valid timer
	SysOK The function completed successfully

	function StopTimer (T : Integer) : Syscode;
	[in] T Timer number
	SysInvalidTimer The timer specified by T is not a valid timer
	SysOK The function completed successfully

	5.15 Mathematical Operations
	function Abs (x : Real) : Real;
	function Atan (x : Real) : Real;
	function Ceil (x : Real) : Integer;
	function Cos (x : Real) : Real;
	function Exp (x : Real) : Real;
	function Log (x : Real) : Real;
	function Log10 (x : Real) : Real;
	function Sign (x : Real) : Integer;
	function Sin (x : Real) : Real;
	function Sqrt (x : Real) : Real;
	function Tan (x : Real) : Real;

	5.16 Bit-Wise Operation
	function BitAnd (X : Integer; Y : Integer) : Integer;
	function BitNOT (X : Integer) : Integer;
	function BitOr (X : Integer; Y : Integer) : Integer;
	function BitXor (X : Integer; Y : Integer) : Integer;

	5.17 String Operations
	function Asc (S : String) : Integer;
	function Chr$ (I : Integer) : String;
	[in] I The integer value to be converted

	function Hex$ (I : Integer) : String;
	[in] I The integer value to be converted

	function LCase$ (S : String) : String;
	[in] S The string to be converted to all lower case

	function Left$ (S : String; I : Integer) : String;
	[in] S The source string
	[in] I The number of characters to return in the result

	function Len (S : String) : Integer;
	[in] S The string

	function Mid$ (S : String; start : Integer; length : Integer) : String;
	[in] S The source string
	[in] start Character position to start from
	[in] length The number of characters to return in the result

	function Oct$ (I : Integer) : String;
	[in] I The integer value to be converted

	function Right$ (S : String; I : Integer) : String;
	[in] S The source string.
	[in] I The number of characters to return in the result.

	function Space$ (N : Integer) : String;
	[in] N The number of spaces to be contained in the string

	function UCase$ (S : String) : String;
	[in] S The string to be converted to all upper case

	5.18 Data Conversion
	function IntegerToString (I : Integer; W : Integer) : String;
	[in] I The integer value to be converted
	[in] W The minimum length of the string

	function RealToString (R : Real; W : Integer; P: Integer) : String;
	[in] R Real variable to convert to a string
	[in] W The minimum length of the string
	[in] P Precision or number of places to the right of the decimal place to display

	function StringToInteger (S : String) : Integer;
	[in] S String to convert to an integer

	function StringToReal (S : String) : Real;
	[in] S String to convert to a real value

	function SysCodeToString(Code : SysCode): String;
	[in] Code A value of type SysCode to convert to a value of type String

	5.19 High Precision
	function DecodeExtFloat(weight : ExtFloatArray) : real;

	5.20 File I/O
	function (filename : string; mode : FileAccessMode) : Syscode;
	[in] filename The indicator will look in a folder named whatever the indicator's UID is set for (defaulted to 1) for the filename sent as the parameter. Use the entire path (without the drive)
	[in] mode How the file is to be opened: FileCreate, FileAppend, or FileRead. See FileAccessMode in Section 4.0 on page 35

	SysOk
	SysNoFileSystemFound
	SysPortBusy
	SysFileNotFound
	SysDirectoryNotFound
	SysFileExists
	SysInvalidFileFormat
	SysBadFilename (over 8 characters)
	SysEndOfFile

	function FileOpen (filename : string; device : FileDevice; mode : FileAccessMode) : SysCode;
	SysOk
	SysFileOpen
	SysRequestFailed

	function USBFileClose : SysCode;
	SysOk
	SysNoFileSystemFound
	SysMediaChanged
	SysNoFileOpen

	function FileClose : Syscode;
	SysOk
	SysNoFileOpen

	function USBFileDelete (filename : string) : SysCode;
	Filename -the indicator will look in a folder named whatever the indicator's UID is set for (defaulted to 1) for the filename sent as the parameter
	SysOk
	SysNoFileSystemFound
	SysPortBusy
	SysFileNotFound
	SysDirectoryNotFound
	SysBadfilename

	USBFileDelete(“Testing.txt”);
	function FileDelete (filename : string; device : FileDevice) : Syscode;
	SysOk
	SysFileOpen
	SysFileNotFound

	FileDelete(“Testing.txt”, FTP);
	FileDelete(“Testing.txt”, USB);
	function USBFileExists (filename : string) : SysCode;
	Filename - the indicator will look in a folder named whatever the indicator's UID is set for (defaulted to 1) for the filename sent as the parameter
	SysOk
	SysNoFileSystemFound
	SysPortBusy
	SysInvalidMode
	SysBadfilename

	USBFileExists(“Testing.txt”);
	function FileExists (filename : string; device : FileDevice) : SysCode;
	SysOk
	SysFileOpen
	SysFileNotFound

	FileExists(“Testing.txt”, SDCard);
	FileExists(“Testing.txt”, FTP);
	function ReadLn (VAR data : string) : SysCode;
	Data: this is the string type variable that the data will be placed in to display or print or otherwise be used by the program; It reads one line at a time and the entire line is in this string
	SysOk
	SysNoFileOpen
	SysMediaChanged
	SysNoFileSystemFound
	SysEndOfFile

	Result := ReadLn(sTempString); –Reads a line of data from whatever file is open
	while Result <> SysEndOfFile –Loops, looking at the return code until the end
	loop
	Result := ReadLn(sTempString);
	WriteLn(3, sTempString); –Prints each line read out Port 3
	end loop;
	procedure Write (Port : Integer; data : string);
	Port - Whichever port on the indicator the data will be sent out of. Port 2 is used for USB

	function FileWrite (S : String) : SysCode;
	S - The string to append to the file
	SysOk
	SysNoFileOpen
	SysNoFileSystemFound

	FileWrite(“line of data”);
	function FileWriteLn (S : String) : SysCode;
	S - The string to append to the file
	SysOk
	SysNoFileOpen
	SysNoFileSystemFound

	FileWriteLn(“line of data”);
	function GetUSBStatus : SysCode;
	SysOk
	SysInvalidRequest

	Result := GetUSBStatus;
	function GetUSBAssignment : USBDeviceType;
	dDevice := GetUSBAssignment; –verify the assignment
	if dDevice = USBFileSystem then
	WriteLn(3,"USBFlashDrive");
	elsif dDevice = USBHostPC then
	WriteLn(OutPort,"USBHostPC");
	elsif dDevice = USBPrinter2 then
	WriteLn(OutPort,"USBPrinter2");
	elsif dDevice = USBPrinter1 then
	WriteLn(OutPort,"USBPrinter1");
	elsif dDevice = USBKeyboard then
	WriteLn(OutPort,"USBKeyboard");
	else
	WriteLn(OutPort,"Device Unknown");
	end if;
	function SetUSBAssignment (device : USBDeviceType) : SysCode
	device (see Section 4.0 on page 35)
	SysOk
	SysDeviceNotFound
	SysPortBusy

	SetUSBAssignment(USBHostPC);
	function ReleaseUSBAssignment : SysCode
	SysOk
	SysDeviceNotFound
	SysPortBusy

	ReleaseUSBAssignment;
	function IsUSBDevicePresent (device : USBDeviceType) : SysCode;
	device (see Section 4.0 on page 35)
	SysOk
	SysDeviceNotFound

	Result := IsUSBDevicePresent(USBFileSystem);
	if Result <> SysOk then
	WriteLn(OutPort,"Flash Drive Not Found");
	else
	WriteLn(OutPort,"SysOK");
	end if;
	function SetFileTermin (termin : FileLineTermination) : SysCode;
	SysOk

	SetFileTermin(FileCRLF);
	function DBLoad (db name : String) : SysCode;
	SysOk
	SysNoSuchDatabase
	SysNoFileSystemFound
	SysFileAlreadyOpen
	SysFileNotFound
	SysDirectoryNotFound
	SysInvalidFileFormat
	SysPortBusy
	if DBLoad("Product") = Sysok then
	DisplayStatus("Product Database Loaded into 920i")
	end if;

	function DBSave (db name : String) SysCode;
	SysOk
	SysNoSuchDatabase
	SysNoFileSystemFound
	SysFileAlreadyOpen
	SysFileNotFound
	SysDirectoryNotFound
	SysFileExists
	SysPortBusy
	if DBSave("Product") = Sysok then
	DisplayStatus("Product Database Saved to thumb drive")
	end if;

	5.21 882D Belt Scale Data Acquisition
	function GetMaxCapacity (S : Integer; VAR C : Real) : SysCode;
	[in] S Scale number
	[out] C Scale capacity
	SysInvalidScale The scale specified by S does not exist
	SysOK The function completed successfully

	function GetTotal (S : Integer; T : Integer; V : Real) : SysCode;
	[in] S Scale number
	[in] T Totalizer number (0=master totalizer, 1=totalizer 1, 2=totalizer 2)
	[out] V Current belt totalizer value
	SysInvalidScale The scale specified by S does not exist
	SysInvalidTotalizer The totalizer specified by T does not exist
	SysOK The function completed successfully

	function ResetBeltResetTotal (S : Integer; T : Integer) : SysCode;
	[in] S Scale number
	[in] T Totalizer number (1=totalizer 1, 2=totalizer 2)
	SysInvalidScale The scale specified by S does not exist
	SysInvalidTotalizer The totalizer specified by T does not exist or the master totalizer (0) was specified
	SysOK The function completed successfully

	function GetLoad (S : Integer; V : Real) : SysCode;
	[in] S Scale number
	[out] V Current belt load value
	SysInvalidScale The scale specified by S does not exist
	SysOK The function completed successfully

	function GetSpeed (S : Integer; V : Real) : SysCode;
	[in] S Scale number
	[out] V Current belt speed
	SysInvalidScale The scale specified by S does not exist
	SysOK The function completed successfully

	function GetRate (S : Integer; V : Real) : SysCode;
	[in] S Scale number
	[out] V Current belt rate value
	SysInvalidScale The scale specified by S does not exist
	SysOK The function completed successfully

	function GetTotalizerUnitsString (S : Integer; VAR V : String) : SysCode;
	[in] S Scale number
	[out] V The configured totalizer resolution units string
	SysInvalidScale The scale specified by S does not exist
	SysOK The function completed successfully

	function GetLoadUnitsString (S : Integer; VAR V : String) : SysCode;
	[in] S Scale number
	[out] V The configured load units string
	SysInvalidScale The scale specified by S does not exist
	SysOK The function completed successfully

	function GetSpeedUnitsString (S : Integer; VAR V : String) : SysCode;
	[in] S Scale number
	[out] V The configured belt speed units string
	SysInvalidScale The scale specified by S does not exist
	SysOK The function completed successfully

	function GetRateUnitsString (S : Integer; VAR V : String) : SysCode;
	[in] S Scale number
	[out] V The configured rate resolution units string
	SysInvalidScale The scale specified by S does not exist
	SysOK The function completed successfully

	5.22 Alibi Records
	function AlibiSend(R : Integer, P : Integer) : SysCode;
	[in] R Alibi record number
	[in] P Port number
	SysNoSuchRecord Requested Alibi record does not exist
	SysInvalidPort The port number specified is not valid
	SysOK The function completed successfully

	function AlibiLookup(R : Integer, VAR S : String) : SysCode;
	[in] R Alibi record number
	SysNoSuchRecord Requested Alibi record does not exist
	SysInvalidPort Insufficient string space available
	SysOK The function completed successfully

	6.0 Appendix
	6.1 Event Handlers
	6.2 Compiler Error Messages
	6.3 Database Operations
	6.3.1 Uploading
	6.3.2 Exporting
	6.3.3 Importing
	6.3.4 Clearing
	6.3.5 Downloading

	6.4 Fieldbus User Program Interface
	GetImage(fieldbus_no : integer; var data : BusImage) : SysCode
	SetImage(fieldbus_no : integer; var data : BusImage) : SysCode
	--
	-- Handler Name : BusCommandHandler
	-- Created By : Rice Lake Weighing Systems
	-- Last Modified on : 1/16/2003
	--
	-- Purpose : Example handler skeleton.
	--
	-- Side Effects :
	--
	handler BusCommandHandler;
	--Declaration Section
	busPort : integer;
	data : BusImage;
	i : integer;
	result : SysCode;
	begin
	-- Clear out the data array.
	for i := 1 to 32 loop
	data[i] := 0;
	end loop;
	-- Find out which port (which bus card) started this event.
	busPort := EventPort;
	-- Then read the received data.
	result := GetImage(busPort, data);
	-- Test result as desired
	-- Data interpretation and manipulation goes here.
	-- Finally, put the changed data back.
	result := SetImage(busPort, data);
	-- Test result as desired
	end;

	6.5 Program to Retrieve Hardware Configuration
	6.6 920i User Graphics

