iRite®

Programming Language

Programmer Manual

RICE LAKE

January 22, 2026 WEIGHING SYSTEMS PN 67888 Rev R

© Rice Lake Weighing Systems. All rights reserved.

Rice Lake Weighing Systems® is a registered trademark of
Rice Lake Weighing Systems.
All other brand or product names within this publication are trademarks or
registered trademarks of their respective companies.

All information contained within this publication is, to the best of our knowledge, complete and
accurate at the time of publication. Rice Lake Weighing Systems reserves the right to make
changes to the technology, features, specifications and design of the equipment without notice.

The most current version of this publication, software, firmware and all other product
updates can be found on our website:

www.ricelake.com

https://www.ricelake.com/
https://www.ricelake.com/en-us/

Revision History

Revision History

This section tracks and describes the current and previous manual revisions for awareness of major updates and when the
updates took place.

Revision Date Description

- April 03, 2012 Initial manual release with the launch of the product

M January 21,2022 |Revision history established after Rev M

N August 15,2022 |Added additional API parameters

0 October 20, 2023 | Clarified database operation descriptions

P September 10, 2024 | Added SendChrArray parameter to Serial 1/0 API reference

Q September 19, 2025 |Updated API references

R January 22,2026 | Added Alibi API parameters

Table i. Revision Letter History

RICELAKE

TECHNI, A_ln Technical training seminars are available through Rice Lake Weighing Systems.

Course descriptions and dates can be viewed at www.ricelake.com/training

T W=/ SEMINARS Or obtained by calling 715-234-9171 and asking for the training department.

© Rice Lake Weighing Systems e All Rights Reserved

iRite Programmer Manual

Contents
1.0 IntrodUCHioNo e 7
1 O IV W . oot 7
1.2 R PrOgraMS .. o 7
1.3 Sound Programming PraCtiCesttt 9
72 N V(o 10
2.1 Program Example with Constants and Variableso 1"
3.0 Language SyYNtaX.ottt e 15
3 LeXiCal ElementS . . 15
R T T o 1 15
3.2 KO WOAS . . et 15
313 CONSANES . . o 15
34 DElMIErS . 16
3.2 PIOgIAM StIUCIUIE . . . o ottt et ettt e e e e e e 19
3.3 DBCIAratiONS . .o 21
331 Type Declarations 21
3.3.2 Variable Declarations. 24
3.3.3 Subprogram DecClarationst 25
B4 St EMENIS . .o 27
341 AsSignment Statement. 28
342 Call Statement . . .o 28
34,3 I StaemMeNt . .o 30
344 Loop Statement 32
345 Return Statement. 34
34,6 EXEStatement 34
4.0 BUilt-in TYPeS . . .ottt e 35
41 Using SysCode Data.o 38
5.0 APIREfEreNCettt e 39
5.1 Scale Data ACQUISIIONt 39
5.1 Welght ACQUISTIIONo e 39
512 Weight Data ReCOTdiNgottt 41
513 Tare Manipulationo e 43
514 Rate of Change 45
515 Accumulator Operations.o i 46
546 Scale Operation 48
547 Calibration Data e 53
B2 S EM SUPPO . . . o 54
B3 SBrial [. 61
5.3.1 880 POt NUMDEIING . . . oot e e 65
B4 PrOgram SCall . . .o 66
55 Setpoints and BatChingo 66
5.6 Digital 110 Control . ..o 76
5.7 Fieldbus Data e 78
5.8 Analog Output Operation 79
B0 EMaIl. .o 80
—

RICE l"y‘E Rice Lake continually offers web-based video training on a growing selection

@ of product-related topics at no cost. Visit www.ricelake.com/webinars
N

Visit our website www.RicelLake.com

https://www.ricelake.com

Contents

510 Pulse INpUt Operationt 80
5.1 DISplay Operationo 81
512 Display Programming 82
5121 Setting Widget Colorsttt 88
5122 Image WIdget ICoNSo 89
5123 Display Charting.ot 90
513 Database Operation 91
5131 IRIEE SQL FEAUME . ..ot tie 94
B4 TIMEr CONtIOl . ottt 97
515 Mathematical Operationsttt 99
5.6 Bit-Wise Operation 100
BT SHNG OPEratioNS . ..o\ttt e 101
B8 Data ConVEISION oottt e e 103
59 High PreCiSiono 104
D20 Rl 0. 104
5.21 882D Belt Scale Data ACQUISIEIONt 109
B.22 AlIDI RECOMAS ettt 112
Y o011 1 T 1 113
8.1 EVENTHANAIErS . . .o e 113
8.2 ComPpIler Error MESSageso vttt ettt 115
6.3 Database Operationst 116
B.3.1 UPloading.o 116
B.3.2 EXPOMING . ..o 116
B.3.3 IMPOMNG ..o 117
B.3.4 ClaIING . . oot 117
B.3.5 DOWNIOadingt 117
6.4 Fieldbus User Program Interface 118
6.5 Program to Retrieve Hardware Configuration e 120
B.6 9200 USEr GraphiCs . . .ottt t et 121

?/RL Technical training seminars are available through Rice Lake Weighing Systems.
TECHNIZ.AL Course descriptions and dates can be viewed at www.ricelake.com/training
T W=/ SEMINARS Or obtained by calling 715-234-9171 and asking for the training department.

© Rice Lake Weighing Systems e All Rights Reserved 5

iRite Programmer Manual

— N\

RICE l"y‘E Rice Lake continually offers web-based video training on a growing selection
® of product-related topics at no cost. Visit www.ricelake.com/webinars
N

Visit our website www.RicelLake.com

https://www.ricelake.com

Introduction

1.0 Introduction

iRite is a programming language developed by Rice Lake Weighing Systems to be used with a programmable indicator.

Similar to other programming languages, iRite has a set of rules, called syntax, for composing instructions in a format that a
compiler can understand.

This manual is intended for use by programmers who write iRite applications for digital weight indicators.

WARNING: All programs should be thoroughly tested before implementation in a live system. To prevent personal injury
and equipment damage, software-based interrupts must always be supplemented by emergency stop switches and other
safety devices necessary for the application.

% Manuals are available from Rice Lake Weighing Systems at www.ricelake.com/manuals

> Warranty information is available at www.ricelake.com/warranties

1.1 Overview

An iRite program is a text file, which contains statements composed following the iRite language syntax. The text file created
using the iRite programming language must be compiled before use, this is done using a compiler program.

The compiler reads the text file and translates the program’s intent into commands that are understandable to the indicators
serial interface.

Other programming languages are often general and try to maximize flexibility in applications, therefore they have a lot of
overhead and functionality that the programmer does not need.

With a variety of experienced operators that will be doing most of the iRite programming, there was a need for a language that
was easy to learn and use for all programmers, but still familiar in syntax for the experienced programmer.

While creating the new language, the best features from other languages were used. The result is iRite: a compact language
(only six discrete statement types, three data types) with a general syntax similar to Pascal and Ada, the string manipulation of
Basic, and a rich set of function calls and built-in types specific to the weighing and batching industry.

1.2 iRite Programs

Each of the indicator tasks share processor time, but some tasks have higher priorities than others. If a low priority task is taking
more than its share of processor time, it will be suspended so a higher priority task is given processor time when it needs it.
When all the other higher priority tasks have completed, the low priority task will be resumed.

Gathering analog weight signals and converting it to weight data is the indicator’s highest priority. Running a user-defined
program has a very low priority. Streaming data out a serial port is the lowest priority task, because of its minimal computational
requirements. This means that if the iRite program hangs, the task of streaming out the serial ports will never get any CPU time
and streaming will never happen. An example of interrupting a task would be if a user program included an event handler for
SP1Trip (Setpoint 1 Trip Event) and this event fired.

The logic for the SP1Trip event is executing at a given moment in time. In this example, the programmer wanted to display the
message Setpoint 1 Tripped on the display. If the SP1Trip event logic does not complete by the time the indicator needs to
calculate a new weight, the SP1Trip handler will be interrupted immediately, a new weight will be calculated, and the SP1Trip
event will resume executing exactly where it was interrupted. In most circumstances, this happens so quickly the user will never
know that the SP1Trip handler was ever interrupted.

Write and Compile iRite Programs

Templates and sample programs are available from Rice Lake Weighing Systems to provide the skeleton of a working program.
With the iRite editor open, the program can be written. iRite source files are named with the .src extension.

In addition to writing .src files, a file with .iri extension can also be written. An .iri file is used to define frequently used, similar
subprograms that can then be included in the .src file with the #include API. Because iRite enforces declaration before use, the
#include statement must be placed before any of the subprograms that use components of the .iri file and after any variables,
constants and subprograms the .iri may need to use. For example, one could create a file called string.iri that contains user
created subprograms for string manipulation such as parsing, locating, trimming, etc that are not part of the current iRite API.
When compiled in the iRite editor, the complier takes the contents of the .iri file and places the entirety of it in the place of the
#include statement.

|
E[chH NG SAYSITSM S © Rice Lake Weighing Systems e All Rights Reserved 7

wW

https://www.ricelake.com/manuals
http://www.ricelake.com/warranties

iRite Programmer Manual

When ready to compile the program, use the Compile feature from the Tools menu in the Revolution editor. If the program
compiles without errors a new text file is created. This new text file has the same name but an extension of .cod. The new file
named your_program.cod is a text file containing commands that can be sent to the indicator via a serial communication
connection. Do not edit the .cod file.

iRite Editors
There are three iRite Editors that can be used:
+ Revolution’s 88X and 1280 modules have built-in editors for the 88X and 1280 indicators

+ iRev has a built-in editor for the 920i

+ New in 2017 is VSCode iRite Extension; this has features for programmers like syntax highlighting, snippets and
pre-processing; to use VSCode, download the application from, http://code.visualstudio.com/download and within
VSCode, add the iRite extensions

Coode for Windows 64 bits i now

4 INSTALLED

Figure 1-1. iRite Extensions

Install the Program in the Indicator

The indicator must be in configuration mode before the .cod file can be sent. Use Revolution to send the .cod file to the
indicator.

The .cod file can be sent directly from Revolution by using the Download Configuration... selection on the Communications
menu and specifying to send the .cod file.

If the indicator is not in configuration mode, a pop-up message will appear in Revolution indicating it is not in configuration. It is
recommended that Revolution or the Revolution Editor is used to send the compiled program to the indicator. This method
implements error checking on each string sent to the indicator and helps protect from data transmission errors corrupting the
program.
Install and Set up VSCode iRite Editor
1. Install Revolution.
Download and Install VSCode from http://code.visualstudio.com/download.
Open VSCode.
Search extensions for Language iRite.
Install Language iRite.
Create new folder or open an existing one for your iRite project.
Create or open a .src file.
8. Click the iRite Build button to build.

An irite.settings.json file will be generated in this directory when the first build is created. Open this file to edit the desired
indicator information.

No ok owbd

8 Visit our website www.RiceLake.com WEIGHI N

https://www.ricelake.com
https://code.visualstudio.com/download
https://code.visualstudio.com/download
http://code.visualstudio.com/download

Introduction

Running the iRite Program

A program written for an indicator is simply a collection of one or more custom event handlers and their supporting
subprograms. A custom event handler is run whenever the associated event occurs. The ProgramStartup event is called
whenever the indicator is powered up, is taken out of configuration mode, or is sent the RS serial command. It should be
straightforward when the other event handlers are called.

Example: the DotKeyPressed event handler is called whenever “.” is pressed.

All events have built-in intrinsic functionality associated with them, although, the intrinsic functionality may be to do nothing. If a
custom event handler is written for an event, the custom event handler will be called instead of the intrinsic function, and the
default action will be suppressed.

For example, the built-in intrinsic function of the UNITS key is to switch between primary, secondary, and tertiary units. If the
handler UnitsKeyPressed was defined in a user program, then the UNITS key no longer switches between primary, secondary,
and tertiary units, but instead does whatever is written in the handler UnitsKeyPressed. The ability to turn off the custom event
handler and return to the intrinsic functionality is provided by the DisableHandler function.

It is important to note that only one event handler can be running at a time. This means that if an event occurs while another
event handler is running, the new event will not be serviced immediately but instead will be placed in a queue and serviced after
the current event is done executing.

This means that if executing within an infinite loop in an event handler, then no other event handlers will ever get serviced.
This doesn’'t mean that the indicator will be totally locked-up: The indicator will still be executing its other tasks, like calculating
current weights, and running the setpoint engine. But it will not run any other custom event handlers while one event is
executing in an infinite loop.

There are some fatal errors that an iRite program can make that will completely disable the indicator. Some of these errors are
...divide by zero, string space exhausted, and array bounds violation. When they occur, the indicator stops processing and
displays a fatal error message on the display. Power must be cycled to reset the indicator.

After the indicator has been restarted, it should be put into setup mode, and a new version (without the fatal error) of the iRite
program should be loaded. If a fatal error occurs in the ProgramStartup Handler, then cycling power to the unit will only cause
the ProgramStartup Handler to be run again and repeat the fatal error.

In this case, perform a RESETCONFIGURATION. The program, along with the configuration, will be erased and set to the
defaults. This will allow the reload of the iRite program after the code that generated the fatal error has been corrected and the
program re-compiled.

1.3 Sound Programming Practices

When writing source code remember that it has two important functions: it must work and how it works must be clearly
documented. With well documented source code, a high quality product is produced that will require minimal maintenance.

iRite source code may need to be reviewed over time, long after the original author has forgotten how the program worked or
isn’'t around to ask. This is why programming is done to a specific standard. The template programs, example programs, and

purchased custom programs that are available from Rice Lake Weighing Systems follow a single standard. This standard can
be downloaded at www.ricelake.com, or a new standard can be written.

The purpose of a standard is to guide programmers while creating software, when a standard is followed the source code will
be easy to follow and understand. A standard documents:

+ The recommended style and form for modules, programs, and subprogram headers
* Proper naming conventions for variables and functions

+ Guidelines for function size and purpose

+ Commenting guidelines and coding conventions

SYSTEM S © Rice Lake Weighing Systems e All Rights Reserved 9

http://www.ricelake.com/

iRite Programmer Manual

2.0 Tutorial

The first program a programmer typically writes in every language is the “Hello World!” program. Once that has been
accomplished, the basic components will be in place and the door will be open to the imagination to start writing real world
solutions to some challenging tasks.

Below is the “Hello World!” program in iRite:

01 program HelloWorld;

02

03 begin

04 DisplayStatus("Hello, world!");
05 end HelloWorld;

This program will display the text “Hello World!” on the indicator’s display in the status message area, every time the indicator is
turned on, taken out of configuration mode or reset. Below is a description of each line:

Line 01: program HelloWorld;

The first line is the program header. It consists of the keyword program followed by the name of the program. The name of the
program is arbitrary and made up by the programmer. The program name; however, must follow the identifier naming rules
(cannot start with a number or contain a space).

Line 02:

The second line is an optional blank line. Blank lines can be placed anywhere in the program to separate important lines and to
make the program easier to read and understand.

Line 03: begin

The begin keyword is the start of the optional main code body. The optional main code body is actually the ProgramStartup
event handler. The ProgramStartup handler is the only event handler that doesn’t have to be specifically named.

Line 04: DisplayStatus("Hello, world!");

The statement DisplayStatus("Hello, world!") is the only statement in the main code body. It is a call to the built-in procedure
DisplayStatus with the string constant “Hello, world!” passed as a parameter. The result is the text, "Hello, world!" will be shown
in the status area of the display (lower left corner), whenever the startup event is fired.

Line 05: end HelloWorld:;

The keyword end followed by the same identifier for the program name used in line one, HelloWorld, is required to end the
program.

Only the first and last lines are required, the program would compile, but it would do nothing. At a minimum, a working program
must have at least one event handler, though it doesn’t have to be the ProgramStartup handler. We could have written the
HelloWorld program to display “Hello, world!” whenever any key on the keypad was pressed. It would look like this:

01 program HelloWorld;

02

03 handler KeyPressed;

04 begin

05 DisplayStatus("Hello, worla!™);
06 end;

07

08 end HelloWorld;

In this version, the KeyPressed event handler is used to call the DisplayStatus procedure. The KeyPressed event will fire any
time any key on the keypad is pressed. Notice that the begin keyword that started the main code body, and the DisplayStatus
call have been removed and replaced with the four lines making up the KeyPressed event handler definition.

Using the Revolution editor, write the original version of the “Hello, world!” program on the system. After it has compiled the
program successfully, download it to the indicator. Once the program has been downloaded and the indicator is put back in run
mode, then the text Hello, world! should appear on the display.

10 Visit our website www.RicelLake.com

https://www.ricelake.com

Tutorial

21 Program Example with Constants and Variables

The “Hello, world!” program didn’t use any explicitly declared constants or variables (the string “Hello, world!” is actually a
constant, but not explicitly declared). Most useful programs use many constants and variables. The following program will
calculate the area of a circle for various length radii.

The program, named PrintCircleAreas, is shown below.

01 program PrintCircleAreas;

02

03 -- Declare constants and aliases here.

04 g_ciPrinterPort : constant integer := 2;

05

06 -- Declare global variables here.

07 g_iCount : integer := 1;

08 g_rRadius : real;

09 g_rArea : real;

10 g_sPrintText; string;

11

12

13 function CircleArea(rRadius : real) : real;
14 crPi: constant real := 3.141592654;

15 begin

16 -- The area of a circle is defined by: area = pi*(r*2).
17 return (crPi * rRadius * rRadius);

18 end;

19

20

21 begin

22

23 for g_iCount:= 110 10

24 loop

25

26 g_rRadius := g_iCount;

27 g_rArea := CircleArea(g_rRadius);

28

29 g_sPrintText := "The area of a circle with radius " + RealToString(g_rRadius, 4, 1)
30 +"is " + RealToString(g_rArea, 7, 2);
31

32 WriteLn(g_ciPrinterPort, g_sPrintText);
33

34 end loop;

35

36 end PrintCircleAreas;

The PrintCircleAreas program demonstrates variables and constants as well as introducing these important ideas: for loop,
assignment statement, function declarations, function calling and return parameters, string concatenation, WriteLn procedure, a
naming convention, comments, and a couple of data conversion functions.

This program will calculate the areas of circles with radius from 1to 10 (counting by 1s) and send text like, The area of a circle
with radius 1 is 3.14, once for each radius, out the communication port 2.

01 program PrintCircleAreas;

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 1

iRite Programmer Manual

Line 01 is the program header with the keyword program and the program identifier PrintCircleAreas. This is the same in
theory as the HelloWorld program header.

Line 03 is a comment. In iRite all comments are started with a —- (double dash). All text after the double dash up to the end of
the line is considered a comment. Comments are used to communicate to any reader what is going on in the program on the
specific lines with the comment or immediately following the comment. The —- can start on any column in a line and can be
after, on the same line, as other valid program statements.

Line 4 is a global constant declaration for the communication port that a printer may be connected to. This simple line has many
important parts:

04 g_ciPrinterPort : constant integer := 2;

First, an identifier name is given. Identifier names are made up by the programmer and should accurately describe what the
identifier is used for. In the name g_ciPrinterPort the “PrinterPort” part tells us that this identifier will hold the value of a port
where a printer should be connected. The “g_ci” is a prefix used to describe the type of the identifier. When “g_ciPrinterPort” is
used later on in the program, the prefix may help someone reading the program, even the program’s author, to easily determine
the identifier's data type without having to look back at the declaration.

The “g_" in the prefix helps tell us that the identifier is “global”. Global identifiers are declared outside of any subprogram
(handler, function, procedure) and have global scope. The term “scope” refers to the region of the program text in which the
identifier is known and understood. The term “global” means that the identifier is “visible” or “known” everywhere in the program.
Global identifiers can be used within an event handler body, or any procedure or function body. Global identifiers also have
“program duration”. The duration of an identifier refers to when or at what point in the program the identifier is understood, and
when their memory is allocated and freed. Identifiers with global duration, in the indicator program, are understood in all text
regions of the program, and their memory is allocated at program start-up and is re-allocated when the indicator is powered up.

The “c” in the prefix helps us recognize that the identifier is a constant. Constants are a special type of identifier that are
initialized to a specific value in the declaration and may not be changed anytime or anywhere in the program. Constants are
declared by adding the keyword constant before the type.

Constants are very useful and make the program more understandable. In this example, we defined the printer port as port 2. If
we would have just used the number 2 in the call to WriteLn, then a reader of the program would not have any idea that the
programmer intended a printer to be connected to the programmable indicator’s port 2.

Also, in a larger program, port 2 may be used hundreds of times in Write and WriteLn calls. Then, if it were decided to change
the printer port from port 2 to port 3, hundreds of changes would have to be made. With port 2 being a constant, only one
change in the declaration of g_ciPrinterPort would be required to change the printer port from 2 to 3.

The type of the constant is an integer. The “i” in the prefix helps us identify g_ciPrinterPort as an integer. The keyword integer
follows the keyword constant and specifies the type compatibility of the identifier as an integer and also determines how much
memory will be required to store the value (a value of 2 in this example). In the iRite programming language, there are only 3
basic data types: integer, real and string.

The initialization of the constant is accomplished with the “:= 2" part of the statement. Initialization of constants is done in the
declaration, with the assignment operator, :=, followed by the initial value.

“n

Finally, the statement is terminated by a semicolon. The ;" is used in iRite and other languages as a statement terminator and
separator. Every statement must be terminated with a semicolon. Do not read this to mean “every line must end in a
semicolon’; this is not true. A statement may be written on one line, but it is usually easier to read if the statement is broken
down into enough lines to make some keywords stand out and to keep the length of each line less than 80 characters.

Some statements contain one or more other statements.
Example: g_ciPrinterPort : constant integer .= 2;

The above is an example of a simple statement that easily fit on one line of code. The loop statement in the program startup
handler (main code body) is spread out over several lines and contains many additional statements. It does, however, end with
line end loop;, and ends in a semicolon.

06 -- Declare global variables here.
07 g_iCount : integer := 1;

08 g_rRadius : real;

09 g_rArea : real;

10 g_sPrintText; string;

12 Visit our website www.Ricel ake.com WEIGHING SYSTEM ¢

https://www.ricelake.com

Tutorial

Line 6 is another comment to let us know that the global variables are going to be declared.

Lines 7—10 are global variable declarations. One integer, g_iCounter, two reals, g_rRadius and g_rArea, and one string,
g_sPrintText, are needed during the execution of this program. Like the constant g_ciPrinterPort, these identifiers are global in
scope and duration; however, they are not constants. They may have an optional initial value assigned to them, but it is not
required. Their value may be changed any time they are “in scope”, they may be changed in every region of the program
anytime the program is loaded in the indicator.

Lines 13—18 are our first look at a function declaration. A function is a subprogram that can be invoked (or called) by other
subprograms. In the PrintCircleAreas program, the function CircleArea is invoked in the program startup event handler. The
radius of a circle is passed into the function when it is invoked. In iRite there are three types of subprograms: functions,
procedures, and handlers.

13 function CircleArea(rRadius : real) : real;

14 crPi: constant real := 3.141592654;

15 begin

16 -- The area of a circle is defined by: area = pi*(r"2).
17 return (crPi * rRadius * rRadius);

18 end;

On line 13, the function declaration starts with the keyword function followed by the function name. The function name is an
identifier chosen by the programmer. We chose the name “CircleArea” for this function because the name tells us that we are
going to return the area of a circle. Our function CircleArea has an optional formal arguments (or parameters) list. The formal
argument list is enclosed in parenthesis, like this: (rRadius : real). Our example has one argument, but functions and
procedures may have zero or more.

Argument declarations must be separated by a semicolon. Each argument is declared just like any other variable declaration:
starting with an identifier followed by a colon followed by the data type. The exception is that no initialization is allowed.
Initialization wouldn’t make sense, since a value is passed into the formal argument each time the function is called (invoked).

The rRadius parameters are passed by value. This means that the radius value in the call is copied in rRadius. If rRadius is
changed, there is no effect on the value passed into the function. Unlike procedures, functions may return a value. Our function
CircleArea returns the area of a circle. The area is a real number. The data type of the value returned is specified after the
optional formal argument list. The type is separated with a colon, just like in other variable declarations, and terminated with a
semicolon.

Up to this point in our program, we have only encountered global declarations. On line 14 we have a local declaration. A local
declaration is made inside a subprogram and its scope and duration are limited. So the declaration: crPi : constant real :=
3.141592654; on line 14 declares a constant real named crPi with a value of 3.141592654. The identifier crPi is only known—
and only has meaning—inside the text body of the function CircleArea. The memory for crPi is initialized to the value
3.141592654 each time the function is called.

Line 15 contains the keyword begin and signals the start of the function code body. A function code body contains one or more
statements.

Line 16 is a comment that explains what we are about to do in line 17. Comments are skipped over by the compiler, and are not
considered part of the code. This doesn’'t mean they are not necessary; they are, but are not required by the compiler.

Every function must return a value. The value returned must be compatible with the return type declared on line 14. The
keyword return followed by a value, is used to return a value and end execution of the function. The return statement is always
the last statement a function runs before returning. A function may have more than one return statement, one in each
conditional execution path; however, it is good programming practice to have only one return statement per function and use a
temporary variable to hold the value of different possible return values.

The function code body, or statement lists, is terminated with the end keyword on line 18.

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 13

iRite Programmer Manual

In this program we do all the work in the program startup handler. We start this unnamed handler with the begin keyword on
line 21.

23 for g_iCount:= 110 10

24 loop

25

26 g_rRadius := g_iCount;

27 g_rArea := CircleArea(g_rRadius);

28

29 g_sPrintText := "The area of a circle with radius " + RealToString(g_rRadius, 4, 1)
30 +"is " + RealToString(g_rArea, 7, 2);
31

32 WriteLn(g_ciPrinterPort, g_sPrintText);

33

34 end loop;

On line 23 we see a for loop to start the first statement in the startup handler. In iRite there are two kinds of looping constructs.
The for loop and the while loop. For loops are generally used when you want to repeat a section of code for a predetermined
number of times. Since we want to calculate the area of 10 different circles, we chose to use a for loop.

For loops use an optional iteration clause that starts with the keyword for followed by the name of variable, followed by an
assignment statement, followed by the keyword to, then an expression, and finally an optional step clause. Our example
doesn’t use a step clause, but instead uses the implicit step of 1. This means that lines 26 through 32 will be executed ten
times. The first time g_iCount will have a value of 1, and during the last iteration, g_iCount will have a value of 10.

All looping constructs (the for and the while) start with the keyword loop and end with the keywords end loop, followed by a
semicolon. In our example, loop is on line 24 and end loop is on line 34. In between these two, are found, the statements that
make up the body of the loop.

Line 26 is an assignment of an integer data type into a real data type. This line is unnecessary and the assignment could have
been made automatically if the integer g_iCount was passed into the function CircleArea directly on line 27, since CircleArea is
expecting a real value. Calls to functions like CircleArea are usually done in an assignment statement if the functions return
value need to be used later in the program. The return value of CircleArea (the area of a circle with radius g_rRadius) is stored
in g_rArea.

The assignment on lines 29 and 30 uses two lines strictly for readability. This single assignment statement does quite a bit. We
are trying to create a string of plain English text that will say: “The area of a circle with radius xx.x is yyyy.yy”, where the radius
value will be substituted for xx.x and the calculated area will be substituted for yyyy.yy. The global variable g_sPrintTextis a
string data type. The constants (or literals): “The area of a circle with radius ” and “ is ” are also strings.

However, g_rRadius and g_iArea are real values. We had to use a function from the API to convert the real values to strings.
The API function RealToString is passed a real and a width integer and a precision integer. The width parameter specifies the
minimum length to reserve in the string for the value. The precision parameter specifies how many places to report to the right
of the decimal place. To concatenate all the smalll strings into one string we use the string concatenation operator, “+”.

Finally, we want to send the new string we made to a printer. The Write and WriteLn procedures from the API send text data to
a specified port. Earlier in the program we decided the printer port will be stored in g_ciPrinterPort. So the WriteLn call on line
32 send the text stored in g_sPrintText, followed by a carriage return character, out port 2.

If we had a printer connected to port 2 on the programmable indicator, every time the program startup handler is fired, we would
see the following printed output:

The area of a circle with radius 1.0 is 3.14
The area of a circle with radius 2.0 is 12.57
The area of a circle with radius 3.0 is 28.27
The area of a circle with radius 4.0 is 50.27
The area of a circle with radius 5.0 is 78.54
The area of a circle with radius 6.0 is 113.10
The area of a circle with radius 7.0 is 153.94
The area of a circle with radius 8.0 is 201.06
The area of a circle with radius 9.0 is 254.47
The area of a circle with radius 10.0 is 314.16

14 Visit our website www.RicelLake.com WEIGHING SYSTEM ¢

https://www.ricelake.com

Language Syntax

3.0 Language Syntax

This section provides an overview of language syntax for the iRite software.

3.1 Lexical Elements
For details about lexical elements, see the following information:

3.1.1 Identifiers

An identifier is a sequence of letters, digits, and underscores. The first character of an identifier must be a letter or an
underscore, and the length of an identifier cannot exceed 100 characters. Identifiers are not case-sensitive: “HELLO” and
“hello” are both interpreted as “HELLO”.

Examples:
Valid identifiers: Variable12
_underscore
Std_Deviation
Not valid identifiers: 9abc First character must be a letter or an underscore.
ABC DEF Space (blank) is not a valid character in an identifier.

ldentifiers are used by the programmer to name programs, data types, constants, variables, and subprograms.

They can be named anything as long as they follow the rules above and the identifiers are not already used as a keyword or as
a built-in type or built-in function. Identifiers provide the name of an entity. Names are bound to program entities by declarations
and provide a simple method of entity reference. For example, an integer variable iCounter (declared iCounter : integer) is
referred to by the name iCounter.

3.1.2 Keywords

Keywords are special identifiers that are reserved by the language definition and can only be used as defined by the language.
The keywords are listed below for reference purposes. More detail about the use of each keyword is provided later in this
manual.

and array begin builtin constant database
else elseif end exit for function
handler if integer is loop mod

not of or procedure program real
record return step stored string then

to type var while

3.1.3 Constants

Constants are tokens representing fixed numeric or character values and are a necessary and important part of writing code.
Here we are referring to constants placed in the code when a value or string is known at the time of programming and will never
change once the program is compiled. The compiler automatically figures out the data type for each constant.

NOTE: Be careful not to confuse the constants in this discussion with identifiers declared with the keyword constant,
although they may both be referred to as constants.

The three types of constants are defined by the language as described in the following sections.

Constant Integer

A constant integer is a sequence of decimal digits. The value of constant integer is limited to the range 0...2%" — 1 (+/-
2,147,483,647). Any values outside the allowed range are silently truncated.

Any time a whole number is used in the text of the program, the compiler creates a constant integer.

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 15

iRite Programmer Manual

Constant Real

A constant real is a constant integer immediately followed by a decimal point and another constant integer. Constant Reals
conform to the requirements of IEEE-754 for double-precision floating point values. When the compiler sees a number in the
format n.n then a constant real is created.

Using the value .56 would generate a compiler error. Instead compose constant reals between —1 and +1 with a leading zero
like this: 0.56 and —0.667.
Constant String

A constant string is a sequence of printable characters delimited by quotation marks (double quotes, "). The maximum length
allowed for a constant string is 1000 characters, including the delimiters.

3.1.4 Delimiters
Delimiters include all tokens other than identifiers and keywords, including the arithmetic operators listed below:

Below is a functional grouping of all of the delimiters in iRite.

Punctuation
Parentheses
() (open and close parentheses) group expressions, isolate conditional expressions, and indicate function parameters:

iFarenheit := ((9.0/5.0) * iCelcius) + 32; -- enforce proper precedence
if (iVal >=12) and (iVal <= 34) or (iMaxVal > 200) -- conditional expr.
EnableSP(5); -- function parameters

Brackets

[1(open and close brackets) indicate single and multidimensional array subscripts:

type CheckerBoard is array [8, 8] of recSquare;
iThirdElement := aiValueArray[3];
Comma

The comma(,) separates the elements of a function argument list and elements of a multidimensional array:

type Matrix is array [4,8] of integer;
GetFilteredCount(iScale, iCounts);
Semicolon

The semicolon (;) is a statement terminator. Any legal iRite expression followed by a semicolon is interpreted as a statement.
Colon

The colon (;) is used to separate an identifier from its data type. The colon is also used in front of the equal sign (=) to make the
assignment operator:

function GetAverageWeight(iScale : integer) : real;

iindex : integer;

csCopyright : constant string := "2002 Rice Lake Weighing Systems";
Quotation Mark
Quotation marks (") are used to signal the start and end of string constants:

if sCommand = "download data" then
Write(iPCPort, "Data download in progress. Please wait...");

16 Visit our website www.Ricel ake.com WEIGHING SYSTEM ¢

https://www.ricelake.com

Language Syntax

Relational Operators
Greater than (>)
Greater than or equal to (>=)
Less than (<)
Less than or equal to (<=)

Equality Operators
Equal to (=)
Not equal to (<>)
The relational and equality operators are only used in an if expression. They may only be used between two objects of
compatible type, and the resulting construct will be evaluated by the compiler to be either true or false;
if iPointsScored = 6 then
if iSpeed > 65 then
if tGPA <= 3.0 then
if sEntry <> "2" then

NOTE: Be careful when using the equal to (=) operator with real data. Because of the way real data is stored and the
amount of precision retained, it may not contain what would be expected.

Example, given a real variable named rTolerance:
rTolerance :=10.0/3.0

if rTolerance * 3 =10 then
-- do something
end if;

NOTE: The evaluation of the if statement will resolve to false. The real value assigned to rTolerance by the expression
10.0/ 3.0 will be a real value (3.333333) that, when multiplied by 3, is not quite equal to 10.

Logical Operators
These are keywords and not delimiters. In iRite the logical operators are and, or, and not. They are named logical and, logical
or, and logical negation respectively. They are only used in an if expression and can only be used with expressions or values
that evaluate to true or false.
if (iSpeed > 55) and (not flginterstate) or (strOfficer = "Cranky") then
sDriverStatus := "Busted":;

RICE LAKE © Rice Lake Weighing Systems e All Rights Reserved 17

iRite Programmer Manual

Arithmetic Operators

The arithmetic operators (+, - ,*, /, and mod) are used in expression to add, subtract, multiply, and divide integers and real
values. Multiplication and division take precedence over addition and subtraction. A sequence of operations with equal
precedence is evaluated from left to right.

The keyword mod is not a delimiter, but is included here because it is also an arithmetic operator. The modulus (or remainder)
operator returns the remainder when operand 1 is divided by operand 2.

Example:
rResult: 7 mod 3; -- rResult should equal 1

NOTE: Both division (/) and mod operations can cause the fatal divide-by-zero error if the second operand is zero.

When using the divide operator with integers, be careful of losing significant digits.

Example: If dividing a smaller integer by a larger integer then the result is an integer zero: 4/7 = 0. If planning to
assign the result to a real like in the following example:

rSlope : real;
rSlope :=4/7;

rSlope will still equal 0, not 0.571428671 as might be expected. This is because the compiler does integer math when both
operands are integers, and stores the result in a temporary integer. To make the previous statement work in iRite, one of the
operands must be a real data type or one of the operands must evaluate to a real.

So write the assignment statement like:
rSlope :=4.0/7;
If dividing two integer variables, multiply one of the operands by 1.0 to force the compile to resolve the expression to a real:

rSlope : real;

iRise : integer := 4;

iRun : integer := 7,

rSlope := (iRise * 1.0) / iRun;
Now rSlope will equal 0.571428671.

NOTE: The plus sign (%) is also used as the string concatenation operator. The minus sign (<) is also used as a unary
minus operator that has the result equal to the negative of its operand.
Assignment Operator (:=)

The assignment operator is used to assign a value to a compatible program variable or to initialize a constant. The value on the
left of the “:=" must be a modifiable value.

Invalid examples:
3:=1+1; --notvalid
ciMaxAge := 67; -- where ciMaxAge was declared with keyword constant
iinteger := "This is a string, not an integer!"; -- incompatible types
Structure Member Operator (“dot”)
The “dot” (.) is used to access the name of a field of a record or database types.

18 Visit our website www.Ricel ake.com WEIGHING SYSTEM ¢

https://www.ricelake.com

Language Syntax

3.2 Program Structure

A program is delimited by a program header and a matching end statement. The body of a program contains a declarations
section, which may be empty, and an optional main code body. The declaration section and the main code body may not both
be empty.
<program>:
program IDENTIFIER *;
<decl-section>
<optional-main-body>
end IDENTIFIER

<optional-main-body>:
/*NULL ¥/
| begin <stmt-list>

l

—(PROGRAM >—| IDENTIFIER l—@—' decl-section |—| optional-main-body l—
C g —
{_ EnD >—| IDENTIFIER

Figure 3-1. Program Statement Syntax

The declaration section contains declarations defining global program types, variables, and subprograms. The main code body,
if present, is assumed to be the declaration of the program startup event handler. A program startup event is generated when
the instrument personality enters operational mode at initial power-up and when exiting setup mode.

Example:
program MyProgram;
KeyCounter : Integer;
handler AnyKeyPressed,;
begin
KeyCounter := KeyCounter + 1;
end;

begin
KeyCounter ;=0
end MyProgram;

The iRite language requires declaration before use so the order of declarations in a program is very important. The declaration
before use requirement is imposed to prevent recursion, which is difficult for the compiler to detect.

In general, it make sense for certain types of declarations to always come before others types of declarations. For example,
functions and procedures must always be declared before the handlers. Handlers cannot be called or invoked from within the
program, only by the event dispatching system. But functions and procedures can be called from within event handlers;
therefore, always declare the functions and procedures before handlers.

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 19

iRite Programmer Manual

Another example would be to always declare constants before type definitions. This way you can size an array with named

constants.

Example program with a logical ordering for various elements:

program Template; -- program name is always first!
-- Put include (.iri) files here.
#include template.iri

-- Constants and aliases go here.

g_csProgName : constant string := "Template Program",
g_csVersion : constant string :="0.01";

g_ciArraySize : integer := 100;

-- User defined tépe definitions go here.
type tShape is (Circle, Square, Tnangle, Rectangle, Octagon, Pentagon, Dodecahedron);

type tColor is (Blue, Red, Green, Yellow, Purple);

type tDescription is
record
eColor : tColor;
eShape : tShape;
end record;

type tBigArray is array [g_ciArraySize] of tDescription;

-- Variable declarations go here.
g_iBuild : integer;
g_srcResult : SysCode;
g_aArray : tBig rrais; o
g_rSingleRecord : tDescription;

-- Start functions and procedures definitions here.

function MakeVersionString : string;
sTemp : string;

begin
ifg _iBuild > 9 then
IS emp := ("Ver" + g_csVersion +"." + IntegerToString(g_iBuild, 2));
else
s'(lj'e][np = ("Ver" + g_csVersion +".0" + IntegerToString(g_iBuild, 1));
end if;

return sTemp;
end;

groqedure DisplayVersion;
egin

ngplayStatus(g_csProgName +" "+ MakeVersionString);

end;
-- Begin event handler definitions here.

handler User1KeyPressed;

begin .
DisplayVersion;

end;

-- This chunk of code is the system startup event handler.

begin

-- Initialize all global variables here. .
- I.récr.elz(rjnené the build number every time you make a change to a new version.
g_iBuild := 3;

-- Display the version number to the display.
DisplayVersion;

end Template;

20

Visit our website www.RicelLake.com

WEIGHING SYSTEM!

https://www.ricelake.com

Language Syntax

3.3 Declarations
For declaration details, see the following information:

3.3.1 Type Declarations
Type declarations provide the mechanism for specifying the details of enumeration and aggregate types. The identifier
representing the type name must be unique within the scope in which the type declaration appears. All user-defined types must
be declared prior to being used.
<type-declaration>:
type IDENTIFIER is <type-definition> ;'

<type-definition>:
<record-type-definition>
| <array-type-definition>
| <database-type-definition>
| <enum-type-definition>

—(twe) oeveem s) tpe-defniion |—®—>

Figure 3-2. Type Declaration Syntax

—| IDENTIFIER |—®—| stored-option |—| constant-option |—| type l—»

Figure 3-3. ldentifier Syntax

— —| type-declaration r -
—| variable-declaration |—| optional-initial-value I @
—| procedure-declaration
—| function-declaration
—| handler-declaration

Figure 3-4. Type Declaration Syntax

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 21

iRite Programmer Manual

Enumeration Type Definitions
An enumeration type definition defines a finite ordered set of values. Each value, represented by an identifier, must be unique
within the scope in which the type definition appears.
<enum-type-definition>:
(' <identifier-list> "'

<identifier-list>:
IDENTIFIER
| <identifier-list>",' IDENTIFIER
Examples:
type StopLightColors is (Green, Yellow, Red);

type BatchStates is (NotStarted, OpenFeedGate, CloseGate, WaitforSS, PrintTicket, AllDone);

Record Type Definitions

A record type definition describes the structure and layout of a record type. Each field declaration describes a named
component of the record type. Each component name must be unique within the scope of the record; no two components can
have the same name. Enumeration, record and array type definitions are not allowed as the type of a component: only
previously defined user- or system-defined type names are allowed.

<record-type-definition>:
record
<field-declaration-list>
end record

<field-declaration-list>:
<field-declaration>
| <field declaration-list>
<field declaration>

<field-declaration>:
IDENTIFIER "' <type>";'

—(RECORD >—| field-declaration-list |—< END)—(RECORD >—>

Figure 3-5. Record Type Definition Syntax

Examples:

type MyRecord is
record
A integer;
B : real;
end record;

22 Visit our website www.Ricel ake.com WEIGHING SYSTEM ¢

https://www.ricelake.com

Language Syntax

The EmployeeRecord record type definition, below, incorporates two enumeration type definitions, tDepartment and tEmptype:
type tDepartment is (Shipping, Sales, Engineering, Management);

type tEmptype is (Hourly, Salaried);

type EmployeeRecord is
record
ID : integer;
Last : string;
First : string;
Dept : tDepartment;
EmployeeType : tEmptype;
end record;

Database Type Definitions
A database type definition describes a database structure, including an alias used to reference the database.
<database-type-definition>:
database (STRING_CONSTANT)
<field-declaration-list>
end database

<field-declaration-list>:
<field-declaration>
| <field declaration-list>
<field declaration>

<field-declaration>:
IDENTIFIER "' <type>";'

DATABASE o STRING-CONSTANT |—®—| field-declaration-list li

C END)—(DATABASE>—>

Figure 3-6. Database Type Definition Syntax

Example: A database consisting of two fields, an integer field and a real number, could be defined as follows:
type MyDB is
database ("DBALIAS")
A integer
B: real
end database;

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 23

iRite Programmer Manual

Array Type Definitions

An array type definition describes a container for an ordered collection of identically typed objects. The container is organized
as an array of one or more dimensions. All dimensions begin at index 1.

<array-type-definition>:
array ' <expr-list> "' of <type>

Canray IO st Do | oo }—

Figure 3-7. Array Type Definition Syntax

Examples:

type Weights is array [25] of Real;
An array consisting of user-defined records could be defined as follows:

type Employees is array [100] of EmployeeRecord;
A two-dimensional array in which each dimension has an index range of 10 (1...10), for a total of 100 elements could be defined
as follows:

type MyArray is array [10,10] of Integer;
NOTE: In all Qf_tfle preceding examples, no vari_ables (object_s) are createq, no memory i_s allocated bj{ the type definitions.

The type definition only defines a type for use in a later variable declaration, at which time memory is allocated.

3.3.2 Variable Declarations

A variable declaration creates an object of a particular type. The type specified must be a previously defined user- or system-
defined type name. The initial value, if specified, must be type-compatible with the declared object type. All user-defined
variables must be declared before being used.

Variables declared with the keyword stored cause memory to be allocated in battery-backed RAM. Stored data values are
retained even after the indicator is powered down.

Variables declared with the keyword constant must have an initial value.

<variable-declaration>:
IDENTIFIER "' <stored-option> <constant-option> <type>
<optional-initial-value>

<stored-option>:
[* NULL */
| stored

<constant-option>:
/* NULL */
| constant

<optional-initial-value>:
/* NULL ¥/
| == <expr>
Example:
MyVariable : StopLightColor; -- Declare MyVariable
MyCount : stored Integer; --Declare a stored variable of type Integer

24 Visit our website www.RicelLake.com WEIGHING SYSTEM ¢

https://www.ricelake.com

3.3.3 Subprogram Declarations
A subprogram declaration defines the formal parameters, return type, local types and variables, and the executable code of a
subprogram. Subprograms include handlers, procedures, and functions.

Handler Declarations

A handler declaration defines a subprogram that is to be installed as an event handler. An event handler does not permit
parameters or a return type, and can only be invoked by the event dispatching system.

<handler-declaration>:
handler IDENTIFIER ;'
<decl-section>
begin
<stmt-list>
end";’'

Language Syntax

—< HANDLER >—|

IDENTIFIER l—@—' decl-section l—

|—< BEGIN) stmt-list H_ enp)—@—»

Example:
handler SP1Trip;

| : Integer;

begin
forl:=1to10
loop
Writeln (1, "Setpoint Tripped!");
if |I=2 then
return;
endif;
end loop;
end;

Figure 3-8. Handler Declaration Syntax

© Rice Lake Weighing Systems e All Rights Reserved

25

iRite Programmer Manual

Procedure Declarations

A procedure declaration defines a subprogram that can be invoked by other subprograms. A procedure allows parameters but
not a return type. A procedure must be declared before it can be referenced; recursion is not supported.

<procedure-declaration>:
procedure IDENTIFIER
<optional-formal-args> "}’
<decl-section>
begin
<stmt-list>
end";

<optional-formal-args>:
/*NULL */
| <formal-args>

<formal-args>:
(' <arg-list> ")’
<arg-list>:
<optional-var-spec>
<variable-declaration>
| <arg-list>";' <optional-var-spec>
<variable-declaration>

<optional-var-spec>:
* NULL */
| var

—(PROCEDURE)—' IDENTIFIER |—| optional-formal-args |—| subprogram-completion |—>

Figure 3-9. Procedure Declaration Syntax

Examples:

procedure PrintString (S : String);
begin

Writeln (1, "The String is =>",S);
end;

procedure Show\Version;
begin

DisplayStatus ("Version 1.42");
end;

procedure Inc (var iVariable : Integer);
begin

iVariable := iVariable + 1;
end;

26 Visit our website www.Ricel ake.com WEIGHING SYSTEM ¢

https://www.ricelake.com

Language Syntax

Function Declarations

A function declaration defines a subprogram that can be invoked by other subprograms. A function allows parameters and
requires a return type. A function must be declared before it can be referenced; recursion is not supported. A function must
return to the point of call using a return-with-value statement.

<function-declaration>:

function IDENTIFIER
<optional-formal-args> "' <type>";'
<decl-section>

begin

<stmt-list>

end"

—(FUNCTION >—| IDENTIFIER H optional-formal-args |—©—
| type || subprogram-completion I >

Figure 3-10. Function Declaration Syntax

Examples:
function Sum (A : integer; B : integer) : Integer;
begin
return A + B;
end;

function PoundsPerGallon : Real;
begin

return 8.34;
end;

3.4 Statements

There are only six discrete statements in iRite. Some statements, like the if, call, and assignment (:=) are used extensively
even in the simplest program, while the exit statement should be used rarely. The if and the loop statements have variations
and can be quite complex.

<stmt>:

<assign-stmt>
<call-stmt>
<if-stmt>
<return-stmt>
<loop-stmt>
exit-stmt>

VS TEMS © Rice Lake Weighing Systems e All Rights Reserved 27

iRite Programmer Manual

3.4.1 Assignment Statement

__(:)—| expr I ry

\ 4

Figure 3-11. Assignment Statement Syntax

The assignment statement uses the assignment operator (:=) to assign the expression on the right-hand side to the object or
component on the left-hand side. The types of the left-hand and right-hand sides must be compatible. The value on the left of
the “:=" must be a modifiable value.

Examples:
Simple assignments:

iMaxPieces := 12000;

rRotations := 25.3456;

sPlaceChickenPrompt := "Please place the chicken on the scale...";
Assignments in declarations (initialization):

iRevision : integer := 1;

rPricePerPound : real := 4.99;

csProgramName : constant string := "Pig and Chicken Weigher";
Assignments in for loop initialization:

for iCounter := 1to 25
for iTries := ciFirstTry to ciMaxTries
Assignment of function return value:

sysReturn := GetSPTime(4, dtDateTime);
rCosine := Cos(1.234);
Assignment with complex expression on right-hand side:

iTotalLivestock := iNumChickens + iNumPigs + GetNumCows;

rTotalCost := ((iNumBolt * rBoltPrice) + (iNumNuts * NutPrice)) * (1 + rTaxRate);

sOutputText := The total costis : " + RealToString(rTotalCost, 4, 2) + " dollars.";
Assignment of different but compatible types:

iValue := 34.867; -- Loss of significant digits! iValue will equal 34, no rounding!
rDegrees := 212; - No problem! rDegrees will equal 212.000000000000000000

3.4.2 Call Statement

The call statement is used to initiate a subprogram invocation. The number and type of any actual parameters are compared
against the number and type of the formal parameters that were defined in the subprogram declaration. The number of
parameters must match exactly. The types of the actual and formal parameters must also be compatible. Parameter passing is
accomplished by copy-in, or by copy-in/copy-out for var parameters.

<call-stmt>:
<name> "

Copy-in refers to the way value parameters are copied into their corresponding formal parameters. The default way to pass a
parameter in iRite is by value, which means that a copy of the actual parameter is made to use in the function or procedure. The
copy may be changed inside the function or procedure but these changes will never affect the value of the actual parameter
outside of the function or procedure, since only the copy may be changed.

The other way to pass a parameter is to use a copy-in/copy-out method. To specify this method, a formal parameter must be
preceded by the keyword var (variable) in the subprogram declaration. This means the parameter may be changed. Just like
with a value parameter, a copy is made. When the function or procedure is done executing, the value of the copy is then
copied, or assigned, back into the actual parameter. This is the copy-out part. The result is that if the formal var parameter was
changed within the subprogram, then the actual parameter will also be changed after the subprogram returns. Actual var
parameters must be values: a constant cannot be passed as a var parameter.

28 Visit our website www.Ricel ake.com WEIGHING SYSTEM ¢

https://www.ricelake.com

Language Syntax

A potential issue occurs when passing a global parameter as a var parameter. If a global parameter is passed to a function or
procedure as a var parameter, then the system makes a copy of it to use in the function body. If the value of the formal
parameter is changed and some other function or procedure call is made after the change to the formal parameter, the function
or procedure called uses, by name, the same global parameter that was passed into the original function. Then the value of the
global parameter in the second function will be the value of the global when it was pass into the original function. This is
because the changes made to the formal parameter (only a copy of the actual parameter passed in) have not yet been copied-
out, since the function or procedure has not returned yet.
Example:

program GlobalAsVar;
g_ciPrinterPort : constant integer := 2;
g_sString : string := "Initialized, not changed yet";

procedure PrintGlobalString;
begin

WriteLn(g_ciPrinterPort, g_sString);
end;

procedure SetGlobalString (var vsStringCopy : string);
begin

vsStringCopy := "String has been changed";

Write(g_ciPrinterPort, "In function call:),
PrintGlobalString;

end;

begin
Write(g_ciPrinterPort, "Before function call: ");
PrintGlobalString;

SetGlobalString(g_sString);

Write(g_ciPrinterPort, "After function call: "),
PrintGlobalString;

end GlobalAsVar;

When run, the program prints the following:
Before function call: Initialized, not changed yet
In function call: Initialized, not changed yet
After function call: String has been changed

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 29

iRite Programmer Manual

3.4.3 If Statement

—< IF >—| expr l—(THEN)

—| stmt-list |—| optional-elsif-list |—| optional-else-part l—

—(END)—(IF)—@ >

Figure 3-12. If Statement Syntax

The if statement is one of the programmer’s most useful tools. The if statement is used to force the program to execute
different paths based on a decision. In its simplest form, the if statement looks like this:
if <expression> then
<statement list>
end if;
The decision is made after evaluating the expression. The expression is most often a conditional expression. If the expression

evaluates to true, then the statements in <statement list> are executed. This form of the if statement is used primarily to only
do something if a certain condition is true.

Example:

if iStrikes = 3 then
sResponse :="You're out!";
end if;

——(ELSE >—| stmt-list I 1 >

Figure 3-13. Optional Else Statement Syntax

Another form of the if statement, known as the if-else statement has the general form:
if <expression> then
<statement list 1>
else
<statement list 2>
end if;
The if-else is used when the program must decide which of exactly two different paths of execution must be executed. The path
that will execute the statement or statements in <statement list 1> will be chosen if <expression> evaluates to true.
Example:
if iAge => 18 then
sStatus := "Adult";

else
sStatus = "Minor";
end if;
]
30 Visit our website www.RicelLake.com RICE LAKE

WEIGHING SYSTEM!

https://www.ricelake.com

Language Syntax

If the statement is false, then the statement or statements in <statement list 2> will be executed. Once the expression is
evaluated and one of the paths is chosen, the expression is not evaluated again. This means the statement will terminate after
one of the paths has been executed.

Example: If the expression was true and we were executing <statement list 1>, and within the code in
<statement list 1> we change some part of <expression> so it would at that moment evaluate to false,

<statement list 2> would still not be executed. This point is more relevant in the next form called the if-elsif.

A 4

T(ELSIF >—| expr l—(THEN >—| stmt-list I

Figure 3-14. Optional Else-If Statement Syntax

if <expression> then
<statement list 1>
elsif <expression> then
<statement list 2>
elsif <expression> then
<statement list 3>
elsif <expression> then
<statement list 4>
else
<statement list 5>
end if;

Example:

if 'Weight <= 2.0 then
iGrade := 1;

elsif (rWeight > 2.0) and (rWeight < 4.5) then
iGrade :=2;

elsif (rWeight > 4.5) and (rWeight < 9.25) then
iGrade :=3;

elsif (rWeight > 9.25) and (rWeight < 11.875) then
iGrade := 4;

else
iGrade :=0;
sErrorString := "Invalid Weight!";

end if;

The if-elsif version is used when a multi-way decision is necessary and has this general form:

© Rice Lake Weighing Systems e All Rights Reserved

31

iRite Programmer Manual

3.4.4 Loop Statement

—| optional-iteration-clause l—(LOOP >—| stmt-list I

< END)—(LOOP >© >

Figure 3-15. Loop Statement Syntax

The loop statement is used to execute a statement list 0 or more times. An optional expression is evaluated and the statement
list is executed. The expression is then re-evaluated and as long as the expression is true the statements will continue to get
executed. The loop statement in iRite has three general forms. One way is to write a loop with no conditional expression. The
loop will keep executing the loop body (the statement list) until the exit statement is encountered. The exit statement can be
used in any loop, but is most often used in this version without a conditional expression to evaluate. It has this form:

loop

<statement list>

end loop;
This version is most often used with an if statement at the end of the statement list. This way the statement list will always
execute at least once. This is referred to as a loop-until.

Example:
rGrossWeight : real;

loop
WriteLn(2, "I'm in a loop.");
GetGross(1, Primary, rGrossWeight);
if rGrossWeight > 200 then
exit;
end if;
end loop;

A similar version uses an optional while clause at the start of the loop. The while-loop version is used when the loop is to
execute zero or more times. Since the expression is evaluated before the loop is entered, the statement list may not get
executed even once. Here is the general form for the while-loop statement:

while <expression>
loop

<statement list>
end loop;

Example: from above, the statement has a while clause. If the gross weight is greater than 200 pounds then the
loop body will never execute:

rGrossWeight : real;
GetGross(1, Primary, rGrossWeight);

while rGrossWeight <= 200
loop
WriteLn(2, "I'm in a loop.");
GetGross(1, Primary, rGrossWeight);
end loop;

Example: the weight must be known before we could evaluate the expression. In addition we have to get the
weight in the loop. In this example, it would be better programming to use the loop-until version.

32 Visit our website www.Ricel ake.com WEIGHING SYSTEM ¢

https://www.ricelake.com

Language Syntax

Another version is known as the for-loop. The for-loop is best used when you want to execute a chunk of code for a known or
predetermined number of times. In its general form the for-loop looks like this:

for <name> := <expression> to <expression> step <expression>
loop

<statement list>
end loop;

——(FOR >—| name I—(= >—| expr I—(TO >—| expr

|_‘ optional-step-clause ! I >

< WHILE >| expr I

Figure 3-16. Optional Loop lteration Clause Syntax

The optional step clause can be omitted if <name> is to increment by 1 after each run of the statement list. To increment
<name> by 2 or 3, or decrement it by 1 or 2, then use the step clause. The step expression (-1 in the second example below)
must be a constant.

for iCount ;= 97 to 122
loop

strAlpha := strAlpha + chr$(iCount);
end loop;

for iCount := 10 to 0 step -1
loop
if iCount = 0 then
strMissionControl ;= "Blast off!";
else
strMissionControl := IntegerToString(iCount, 2);
end if;
end loop;

A 4

STEP expr I ry

Figure 3-17. Optional Step Clause Syntax

NOTE: Use caution when designing loops to ensure that an infinite loop is not created. If the program encounters an
infinite loop, only the loop will run; subsequent queued events will not be run.

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 33

iRite Programmer Manual

3.4.5 Return Statement

The return statement can only be used inside of subprograms (functions, procedures, and event handlers). The return
statement in procedures and handlers cannot return a value. An explicit return statement inside a procedure or handler is not
required since the compiler will insert one if the return statement is missing. To return from a procedure or handler before the
code body is done executing, use the return statement to exit at that point.

procedure DontDoMuch;

begin

if PromptUser("circle: ") <> SysOK then

return;
end if;

end;
Functions must return a value and an explicit return statement is required. The data type of the expression returned must be
compatible with the return type specified in the function declaration.

function Inc(var viNumber : integer) : integer;

begin
viNumber := viNumber + 1;
return viNumber;

end;

It is permissible to have more than one return statement in a subprogram, but not recommended. In most instances it is better
programming practice to use conditional execution (using the if statement) with one return statement at the end of the function
than itis to use a return statement multiple times. Return statements liberally dispersed through a subprogram body can result
in dead code (code that never gets executed) and hard-to-find bugs.

—(RETURN >—| optional-return-value I @ >

Figure 3-18. Return Statement Syntax

3.4.6 Exit Statement

The exit statement is only allowed in loops. It is used to immediately exit any loop (loop-until, for-loop, while-loop) it is called
from. Sometimes it is convenient to be able to exit from a loop instead of testing at the top. In the case of nested loops (a loop
inside another loop), only the innermost enclosing loop will be exited. See the loop examples in Section 3.4.4 on page 32 for the
exit statement in action.

R .
—C o 0

Figure 3-19. Exit Statement Syntax

34 Visit our website www.RicelLake.com WEIGHING SYSTEM ¢

https://www.ricelake.com

Built-in Types

4.0 Built-in Types

This section provides additional information about the iRite software’s built-in types used in parameters passed to and from.

Code Parameters

BatchingMode Off, Auto, Manual
920i
820i
880
882D
1280

BatchStatus BatchComplete, BatchStopped, BatchRunning, BatchPaused
920i
820i
880
882D
1280

BooleanType BoolTrue, BoolFalse
1280

Buslmage array[32] of integer
920i
820i
1280

BusImageReal array[32] of real
920i
820i
1280

ChrArray array[100] of integer
920i

Color_type White, Black
920i

DataArray
920i array[300] of real for 920i
1280 array[8000] of real for 1280

Decimal_type DP_8_888888, DP_88_88888, DP_888_8888, DP_8888_888, DP_88888_88, DP_888888_8, DP_8888888,
920i DP_8888880, DP_8888800, DP_DEFAULT
820i
880
1280

Displaylmage array[2402] of integer
920i

DTComponent DateTimeYear, DateTimeMonth, Date TimeDay, DateTimeHour, DateTimeMinute, DateTimeSecond
920i
820i
880
882D
1280

ExtFloatArray array[5] of integer
920i
FileAccessMode FileCreate, FileAppend, FileRead
920i
820i
1280
FileDevice USB, SDCard, FTP
1280

Table 4-1. Built-in Types

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 35

iRite Programmer Manual

Code Parameters
FileLineTermination FileCRLF, FileCR, FileLF
920i
820i
1280
GraphType Line, Bar, XY
920i
HW_array_type array[x] of HW_type
920i x =14 (920i / 882D)
820i x =2 (820i)
880 x =1 (880)
882D
1280 x =6 (1280)
HW_type NoCard, DualSerial, DualAtoD, SingleAtoD, AnalogOut, DigitallO, Profibus, Analoglnput, DualAnalogOut, Relay
880
1280
HW_type NoCard, DualSerial, DualAtoD, SingleAtoD, AnalogOut, DigitallO, Pulse, Memory, FieldbusCarrier, DeviceNet, Profibus,
882D EtherNetIP, ABRIO, BCD, DSP2000, Analoginput, ControlNet, DualAnalogOut, EtherCAT, DualEtherNetIP, ModbusTCP,
PROFINET, DualPROFINET, FourChannelRelay
HW_type NoCard, DualSerial, DualAtoD, SingleAtoD, AnalogOut, DigitallO, Pulse, Memory, reservedCard, DeviceNet, Profibus,
920i Ethernet, ABRIO, Analoginput, ControlNet, DualAnalogOut, BCD, DSP2000
820i
IQValType IQSys, IQPIat, IQRawLC, IQCorrLC, IQZeroLC, 1QStatLC, 1Q2ScaleWt, 1Q2StatusLC
920i
1280
Keys GrossNetKey, UnitsKey, ZeroKey, TareKey, PrintKey, N1KEY, N4KEY, N7KEY, DecpntKey, NavUpKey, NavLeftKey,
880 EnterKey, N2KEY,N5KEY,N8KEY,NOKEY, NavRightKey, NavDownKey, N3KEY, N6KEY,NIKEY, ClearKey, TimeDateKey,
DisplayTareKey, DisplayAccumKey, MenuKey
Keys ModeKey, SetpointKey, ZeroKey, PrintKey, MenuKey, NOKEY, N1KEY, N2KEY, N3KEY, N4KEY, N5KEY, N6KEY, N7KEY,
882D N8KEY, N9KEY, DecpntKey, F1KEY, F2KEY, F3KEY, FAKEY, NavUpKey, NavLeftKey, EnterKey, NavRightKey,
NavDownKey, ClearKey, TimeDateKey
Keys Soft4Key, Soft5Key, GrossNetKey, UnitsKey, Soft3Key, Soft2Key, Soft1Key, ZeroKey, Undefined3Key, Undefined4Key,
920i TareKey, PrintKey, N1KEY, N4KEY, N7KEY, DecpntKey, NavUpKey, NavLeftKey, EnterKey, Undefined5Key, N2KEY,
820i N5KEY,NSKEY, NOKEY, Undefined1Key, Undefined2Key, NavRightKey, NavDownKey, N3KEY, N6KEY, N9KEY, ClearKey,
1280 TimeDateKey, WeighlnKey, WeighOutKey, ID_EntryKey, DisplayTareKey, TruckRegsKey, DisplayAccumKey,
ScaleSelectKey, DisplayROCKey, SetpointKey, BatchStartKey, BatchStopKey, BatchPauseKey, BatchResetKey,
DiagnosticsKey, ContactsKey, DoneKey, TestKey, ContrastKey, LLStopKey, LLGoKey, LLOffKey, AuditKey,
KeyedTareKey, ClearAccumKey, AuxPrintKey, USBKey (for 920i), DatabaseKey (for 1280)
Mode GrossMode, NetMode, TareMode
920i
820i
880
1280
OnOffType VOff, Von
920i
1280
PrintFormat GrossFmt, NetFmt, SPFmt, AccumFmt
880
PrintFormat PrintFormat1, PrintFormat2, PrintFormat3, PrintFormat4, PrintFormatNone
882D
PrintFormat GrossFmt, NetFmt, AuxFmt, TrWinFmt, TrRegFmt, TrWOutFmt, SPFmt, AccumFmt, AlertFmt, AuxFmt1, AuxFmt2,
920i AuxFmt3, AuxFmt4, AuxFmt5, AuxFmt6, AuxFmt7, AuxFmt8, AuxFmt9, AuxFmt10, AuxFmt11, AuxFmt12, AuxFmt13,
?2236 AuxFmt14, AuxFmt15, AuxFmt16, AuxFmt17, AuxFmt18, AuxFmt19, AuxFmt20
Table 4-1. Built-in Types (Continued)
|
36 Visit our website www.RiceLake.com RICE LAKE

WEIGHING SYSTEM!

https://www.ricelake.com

Built-in Types

Code Parameters
SysCode SysOk, SysLFTViolation, SysOutOfRange, SysPermissionDenied, SyslnvalidScale, SysBatchRunning,
920i SysBatchNotRunning, SysNoTare, SyslnvalidPort, SysQFull, SysinvalidUnits, SysInvalidSetpoint, SysinvalidRequest,
820i SysInvalidMode, SysRequestFailed, SysinvalidKey, SyslnvalidWidget, SysinvalidState, SysInvalidTimer,
880 SysNoSuchDatabase, SysNoSuchRecord, SysDatabaseFull, SysNoSuchColumn, SyslnvalidCounter, SysDeviceError,
1280 SysInvalidChecksum, SysDatabaseAccessTimeout, SysNoFileOpen, SysFileNotFound, SysinvalidFileFormat,
SysDirectoryNotFound, SysFileReadOnly, SysFileExists, SysNoFileSystemFound, SysFileOpen, SysEndOfFile,
SysNoRoomOnMedia, SysMediaChanged, SysDeviceNotFound, SysNoUSB, SysPortBusy, SysDeviceChange,
SysDeviceAdded, SysBadFileName, SyslnvalidFtpConfig, SysInvalidNetworkConfig, SysFtpStartFailed
SysCode SysOk, SysLFTViolation, SysOutOfRange, SysPermissionDenied, SysinvalidScale, SysBatchRunning,
882D SysBatchNotRunning, SysNoTare, SysInvalidPort, SysQFull, SysinvalidUnits, SysInvalidSetpoint, SysinvalidRequest,
SyslnvalidMode, SysRequestFailed, SysinvalidKey, SysInvalidWidget, SysinvalidState, SysInvalidTimer,
SysNoSuchDatabase, SysNoSuchRecord, SysDatabaseFull, SysNoSuchColumn, SyslnvalidCounter, SysDeviceError,
SyslnvalidChecksum, SysDatabaseAccess Timeout, SysNoFileOpen, SysFileNotFound, SyslnvalidFileFormat,
SysDirectoryNotFound, SysFileReadOnly, SysFileExists, SysNoFileSystemFound, SysFileOpen, SysEndOfFile,
SysNoRoomOnMedia, SysMediaChanged, SysDeviceNotFound, SysNoUSB, SysPortBusy, SysDeviceChange,
SysDeviceAdded, SysBadFileName, SyslnvalidTotalizer
TareType NoTare, PushbuttonTare, KeyedTare
920i
820i
880
1280
TimerMode TimerOneShot, TimerContinuous, TimerDigoutON, TimerDigoutOFF
920i
820i
880
882D
1280
Units Primary, Secondary, Tertiary
920i
820i
880
1280
UnitType pound, kilogram, gram, ounce, short_ton, metric_ton, grain, troy_ounce, troy_pound, long_ton, custom, units_off, none
920i
820i
880
1280
USBDeviceType USBNoDevice, USBHostPC, USBPrinter1, USBPrinter2, USBKeyboard, USBFileSystem
920i
820i
1280
WeightCollectionArray array[8000] of real
920i
1280
WgtMsg array[12] of integer
920i
Table 4-1. Built-in Types (Continued)
|
RICE LAKE

© Rice Lake Weighing Systems e All Rights Reserved

37

iRite Programmer Manual

41 Using SysCode Data

SysCode data can be used to take some action based on whether or not a function completed successfully.

Example: the following code checks the SysCode result following a GetTare function. If the function completed successfully, the
retrieved tare weight is written to Port 1:
Procedure GetTareWeight
SysResult : SysCode;
TareWeight : Real;
begin
SysResult:= GetTare(1, Primary, TareWeight);
If SysResult = SysOk then
WriteLn(1, “The current tare weight is “ + realtostring(TareWeight,0,4));

end if;
end;

]
38 Visit our website www.RicelLake.com RICE LAKE

WEIGHING SYSTEM!

https://www.ricelake.com

API Reference

5.0 API Reference

This section lists the application programming interfaces (APIs) used to program the indicator. Functions are grouped according

to the kinds of operations they support.

NOTE: Check the system.src file to see all of the APIs that are present in the installed version of software.

5.1 Scale Data Acquisition

NOTE: Unless otherwise stated, when an API with a VAR parameter returns a SysCode value other than SysOK, the VAR
parameter is not changed.

5.1.1 Weight Acquisition

Method Description
GetCapacity Sets C to the configured capacity for scale S and units U
1280 Method Signature:
function GetCapacity (S : Integer; U : Units, VAR C : Real) : SysCode;
Parameters:
[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] c Scale capacity
SysCode values returned:
SyslInvalidScale The scale specified by S does not exist
SyslInvalidUnits The units value U is not valid
SysOK The function completed successfully
Example:
Capacity : Real
GetCapacity (1, Primary, Capacity);
GetFilteredCount |Sets C to the current filtered A/D count for scale S
ggg' Method Signature:
880I function GetFilteredCount (S : Integer; VAR C : Integer) : SysCode;
882D Parameters:
1280 [in] S Scale number
[out] c Current filtered A/D count
SysCode values returned:
SyslInvalidScale The scale specified by S does not exist
SysinvalidRequest ~ The scale specified by S is not an A/D-based scale
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully
Example:
FilterCount : Integer;
GetFilteredCount (1, FilterCount);
Table 5-1. Weight Acquisition Methods
|
RICE LAKE

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved

39

iRite Programmer Manual

Method Description
GetGross Sets W to the current gross weight value of scale S, in the units specified by U; W will contain a weight value even if the scale is
920i in programmed overload
88%%' Method Signature:
1280 function GetGross (S : Integer; U : Units; VAR W : Real) : SysCode;
Parameters:
[in] S Scale number
[in] u Units (Primary, Secondary, Tertiary)
[out] w Gross weight
SysCode values returned:
SyslinvalidScale The scale specified by S does not exist
SyslInvalidUnits The units specified by U is not valid
SysinvalidRequest ~ The requested value is not available
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully
Example:
GrossWeight : Real;
GetGross (1, Primary, GrossWeight);
WriteLn (1, "Current gross weight is " + RealToString(GrossWeight,0,1));
GetNet Sets W to the current net weight value of scale S, in the units specified by U; W will contain a weight value even if the scale is in
920i programmed overload
88%%' Method Signature:
1280 function GetNet (S : Integer; U : Units; VAR W : Real) : SysCode;
Parameters:
[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] W Net weight
SysCode values returned:
SyslinvalidScale The scale specified by S does not exist
SyslInvalidUnits The units specified by U is not valid
SysinvalidRequest The requested value is not available
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully
Example:
NetWeight : Real;
GetNet (Scale1, Secondary, NetWeight);
WriteLn (1, "Current net weight is " + RealToString(NetWeight,0,1));
GetRawCount Sets C to the current raw A/D count for scale S
ggg: Method Signature:
880 function GetRawCount (S : Integer; VAR C : Integer) : SysCode;
882D Parameters:
1280 [in] S Scale number
[out] c Current raw A/D count
SysCode values returned:
SyslinvalidScale The scale specified by S does not exist
SysinvalidRequest ~ The scale specified by S is not an A/D-based scale
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully
Example:
RawCount : Integer;
GetRawCount (1, RawCount);

Table 5-1. Weight Acquisition Methods (Continued)

RICE LAKE

40 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Method Description
GetMV Returns the mV value of scale S into the variable passed on as MV
98%((); Methpd Signature:
1280 function GetMV (S : Integer; VAR MV : Real) : SysCode;
820 Parameters:
882D [in] S Scale number
[out] R Millivolts
SysCode values returned:
SyslInvalidScale The scale specified by S does not exist
SysinvalidRequest ~ The requested value is not available
SysOK The function completed successfully
Example:
Millivolt : Real;
GetMV (1, Millivolt);
Writeln (1, “Current Millivolt reading is” + realtostring(Millivolt,0,2));
GetTare Sets W to the tare weight of scale S in weight units specified by U
238: Method Signature:
880 function GetTare (S : Integer; U : Units; VAR W : Real) : SysCode;
1280 Parameters:
[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] w Tare weight

SysCode values returned:
SyslInvalidScale The scale specified by S does not exist
SysinvalidUnits The units specified by U is not valid
SysinvalidRequest The requested value is not available

SysNoTare The specified scale has no tare; W is set to 0.0

SysDeviceError The scale is reporting an error condition

SysOK The function completed successfully
Example:

TareWeight : Real;

GetTare (1, Tertiary, TareWeight);
WriteLn (1, "Current tare weight is " + RealToString(TareWeight,0,1));

Table 5-1. Weight Acquisition Methods (Continued)

5.1.2 Weight Data Recording
There are two methods to record weight readings into an array at a high rate of speed — DataRecording and WeightCollection.

DataRecording

DataRecording allows raw weights to be stored to a user program-specified array on each iteration of the scale processor.
Recording begins when the Start Setpoint (start_sp is satisfied and ends when the Stop Setpoint (stop_sp) is satisfied.

Methods Description
CloseData Turns off data recording started with InitDataRecording; This procedure removes all connections to the data recording function;
Recording To restart data recording, use the InitDataRecording function
?22&') Method Signature:
820 Procedure CloseDataRecording (scale_no : Integer);
Parameters:
[in] scale_no Scale Number
Table 5-2. Data Recording Methods
|
RICE LAKE

© Rice Lake Weighing Systems e All Rights Reserved 41

iRite Programmer Manual

Methods

Description

GetData

RecordSize
920i
1280
820

Returns the number of data points recorded in the user-specified data array
Method Signature:
Function GetDataRecordSize(scale_no : Integer) : Integer;
Parameters:
[in] scale_no Scale Number
Value Returned:
[out] number The number of data points recorded

InitData

Recording
920i
1280
820

Specifies the data array used for the recording, scale number, and the start and stop setpoint numbers

NOTE: If the setpoint conditions return to the start conditions (start_up satisfied, stop_sp not satisfied_, recording will
continue at the array location where it left off. Thus, a continuous batch will need to call CloseDataRecording to stop
recording, then call InitDataRecording to restart data recording at the beginning of the array.

Method Signature:
Function InitDataRecording (data : DataArray; scale_no : Integer; start_sp : Integer; stop_sp : Integer) : SysCode;

Parameters:
[in] data Data array name
[in] scale_no Scale Number
[in] start_sp Start setpoint number
[in] stop_sp Stop setpoint number
SysCode values returned:
SysRequestFailed The function did not complete
SysOk The function completed successfully

SetDataRecord
Precision
920i
1280

Sets the data recording to high precision

Method Signature:
Function SetDataRecordPrecision (scale_no : Integer; precision : OnOffType) : SysCode;
Parameters:
[in] scale_no Scale Number
[in] precision OnOffType Von or VOff
SysCode values returned:
SysRequestFailed The function did not complete
SysOk The function completed successfully

WeightCollection

Table 5-2. Data Recording Methods (Continued)

WeightCollection allows the recording of weights, at the A/D update rate, to a user-specified array of type
WeightCollectionArray.

Methods Description
StartWeight Starts the collection of weight data, from the specified scale, to the user specified array
Collection \ Method Signature:
1922&') Function StartWeightCollection (scale_no : Integer; data : WeightCollectionArray) : SysCode;
Parameters:
[in] scale_no Scale Number
[in] data Data array name
SysCode values returned:
SysRequestFailed The function did not complete
SysOk The function completed successfully
Table 5-3. Weight Collection Methods
|
42 Visit our website www.RiceLake.com RICE LAKE

WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

[in] scale_no Scale Number
Value Returned:
[out] number The number of data points recorded

Methods Description
StopWeight Stops the collection of weight data that was started with StartWeightCollection, and returns the number of data points recorded in
Collection the user-specified data array
1922&') Method Signature:
Function StopWeightCollection(scale_no : Integer) : Integer;
Parameters:

Table 5-3. Weight Collection Methods (Continued)

5.1.3 Tare Manipulation

Methods Description
AcquireTare Acquires a pushbutton tare from scale S
ggg: Method Signature:
880 function AcquireTare (S : Integer) : SysCode;
1280 Parameters:
[in] S Scale number
SysCode values returned:
SyslnvalidRequest The specified scale is Legal for Trade Serial Scale. No tare is acquired
SyslInvalidScale The scale specified by S does not exist or is a program scale
SysLFTViolation The tare operation would violate configured legal-for-trade restrictions for
the specified scale; no tare is acquired
SysOutOfRange The tare operation would acquire a tare that may cause a display overload.
No tare is acquired.
SysPermissionDenied The tare operation would violate configured tare acquisition restrictions for
the specified scale; no tare is acquired
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully
Example:
AcquireTare (1);
ClearTare Removes the tare associated with scale S and sets the tare type associated with the scale to NoTare
ggg: Method Signature:
880 function ClearTare (S : Integer) : SysCode;
1280 Parameters:
[in] S Scale number
SysCode values returned:
SyslnvalidRequest The specified scale is Legal for Trade Serial Scale; no tare is acquired
SyslnvalidScale The scale specified by S does not exist or is a program scale
SysNoTare The scale specified by S has no tare
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully
Example:
ClearTare (1);
Table 5-4. Tare Manipulation Methods
|
RICE LAKE

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved

43

iRite Programmer Manual

Methods Description
GetTareType Sets T to indicate type of tare currently on scale S
ggg: Method Signature:
880 function GetTareType (S : Integer; VAR T : TareType) : SysCode;
1280 Parameters:
[in] S Scale number
[out] T Tare type
TareType values returned:
NoTare There is no tare value associated with the specified scale
PushbuttonTare The current tare was acquired by pushbutton
KeyedTare The current tare was acquired by key entry or by setting the tare
SysCode values returned:
SysDeviceError The scale is reporting an error condition; T is still set to the tare type
SyslnvalidScale The scale specified by S does not exist or is a program scale; T is unchanged
SysOK The function completed successfully
Example:

TT: TareType;

GetTareType (1, TT);
if TT=KeyedTare then ...

SetTare Sets the tare weight for the specified channel
920i Method Signature:
820i function SetTare (S : Integer; U : Units; W : Real) : SysCode;
880 Parameters:
1280 in S Scale number
in U Units (Primary, Secondary, Tertiary)
in w Tare weight
SysCode values returned:
SyslInvalidRequest The specified scale is Legal for Trade Serial Scale; no tare is acquired
SysPermissionDenied The tare operation would violate configured tare acquisition restrictions for
. the specified scale; no tare is acquired
SyslnvalidScale The scale specified by $ does not exist or is a program scale
SyslInvalidUnits The units specified by U is not valid
SysLFTViolation The tare operation would violate configured legal-for-trade restrictions for the
specified scale; no tare is acquired
SysOutOfRange The tare operation would acquire a tare that may cause a display overload;
no tare is acquired
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
DesiredTare : Real;

DesiredTare := 1234.5;
SetTare (1, Primary, DesiredTare);

Table 5-4. Tare Manipulation Methods (Continued)

RICE LAKE

44 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods Description
KeyedTarelgnoreReg() |Sets the tare weight for the specified channel; Disregards TAREFN configuration. Allows a KeyedTare whether TAREFN configu-
920i ration is set to KEYED, BOTH or PBTARE

Method Signature:
function SetTare (S : Integer; U : Units; W : Real) : SysCode;
Parameters:
in S Scale number
in U Units (Primary, Secondary, Tertiary)
in w Tare weight
SysCode values returned:
SyslInvalidRequest The specified scale is Legal for Trade Serial Scale; no tare is acquired
SysPermissionDenied The tare operation would violate configured tare acquisition restrictions for
the specified scale; no tare is acquired
SyslnvalidScale The scale specified by $ does not exist or is a program scale
SyslInvalidUnits The units specified by U is not valid
SysLFTViolation The tare operation would violate configured legal-for-trade restrictions for the
specified scale; no tare is acquired
SysOutOfRange The tare operation would acquire a tare that may cause a display overload,;
no tare is acquired
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully

Example:
DesiredTare : Real;

DesiredTare := 1234.5;
SetTare (1, Primary, DesiredTare);

Table 5-4. Tare Manipulation Methods (Continued)

5.1.4 Rate of Change

Methods Description
GetROC Sets R to the current rate-of-change value of scale S
920i Method Signature:
820i function GetROC (S : Integer; VAR R : Real) : SysCode;
1280 Parameters:
in] S Scale number
out] Rate of change value
SysCode values returned:
SyslnvalidRequest ~ The scale specified by S is not an A/D scale, an industrial serial scale, or Rate of Change is not
supported
SyslInvalidScale The scale specified by S does not exist
SysDeviceError The scale is reportin? an error condition
SysOK The function completed successfully
Example:
ROC : Real;
GetROC g, ROC); _ _
WriteLn (1, "Current ROC is " + RealToString(ROC,0,1));
Table 5-5. Rate of Change Command
I
RICE LAKE

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 45

iRite Programmer Manual

5.1.5 Accumulator Operations

Methods Description
ClearAccum Sets the value of the accumulator for scale S to zero
2%8: Method Signature:
880 function ClearAccum (S : Integer) : SysCode;
1280 Parameters:
[in] S Scale number
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist
SysPermissionDenied The accumulator is not enabled for the specified scale
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully
Example:
ClearAccum (1);
GetAccum Sets W to the value of the accumulator associated with scale S, in the units specified by U
ggg: Method Signature:
880 function GetAccum (S : Integer; U : Units; VAR W : Real) : SysCode;
1280 Parameters:
[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] w Accumulated weight
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist
SyslInvalidUnits The units specified by U is not valid
SysDeviceError The scale is reporting an error condition; D is still updated with the date of
the most recent accumulation
SysPermissionDenied The accumulator is not enabled for the specified scale
SysOK The function completed successfully
Example:
AccumValue : Real;
GetAccum (1, Primary, AccumValue);
GetAccumCount Sets N to the number of accumulations performed for scale S since its accumulator was last cleared
238: Method Signature:
880 function GetAccumCount (S : Integer; VAR N : Integer) : SysCode;
1280 Parameters:
[in] S Scale number
[out] N Accumulator count
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist
SysPermissionDenied The accumulator is not enabled for the specified scale
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully
Example:

NumAccums : Integer;

GetAccumCount (1, NumAccums);

Table 5-6. Accumulator Operation Methods

RICE LAKE

46 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods Description
GetAccumDate Sets D to the date of the most recent accumulation performed by scale S
ggg: Method Signature: .
880 function GetAccumDate (S : Integer; VAR D : String) : SysCode;
1280 Parameters:
[in] S Scale number
[out] D Accumulator date
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist
SysPermissionDenied The accumulator is not enabled for the specified scale
SysDeviceError The scale is reporting an error condition; D is still updated with the date of
the most recent accumulation
SysOK The function completed successfully
Example:
AccumDate : String;
GetAccumDate (1, AccumDate);
GetAccumTime Sets T to the time of the most recent accumulation performed by scale 8
ggg: Methpd Signature: . .
880 function GetAccumTime (S : Integer; VAR T : String) : SysCode;
1280 Parameters:
[in] S Scale number
[out] T Accumulator time
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist
SysPermissionDenied The accumulator is not enabled for the specified scale
SysDeviceError The scale is reporting an error condition. T is still updated with the time of
the most recent accumulation
SysOK The function completed successfully
Example:
AccumTime : String;
GetAccumTime (1, AccumTime);
GetAvgAccum Sets W to the average accumulator value associated with scale S, in the units specified by U, since the accumulator was last cleared
ggg: Methpd Signature: .
880 function GetAvgAccum (S : Integer; U : Units; VAR W : Real) : SysCode;
1280 Parameters:
[in] S Scale number
[in] u Units (Primary, Secondary, Tertiary)
[out] w Average accumulator weight
SysCode values returned:
SyslInvalidScale The scale specified by S does not exist
SyslInvalidUnits The units specified by U is not valid
SysDeviceError The scale is reporting an error condition. W is still updated with the average
accumulator value
SysPermissionDenied The accumulator is not enabled for the specified scale
SysOK The function completed successfully
Example:
AvgAccum : Real;
GetAvgAccum (1, AvgAccum);
Table 5-6. Accumulator Operation Methods (Continued)
I
RICE LAKE

© Rice Lake Weighing Systems e All Rights Reserved 47

iRite Programmer Manual

Methods Description
SetAccum Sets the value of the accumulator associated with scale S to weight W, in units specified by U

ggg' Method Signature:

880| function SetAccum (S : Integer; U : Units; W : Real) : SysCode;

1280 Parameters:
[in] S Scale number
[in] u Units (Primary, Secondary, Tertiary)
[in] w Accumulator value

SysCode values returned:

SyslnvalidScale
SyslInvalidUnits
SysDeviceError
SysPermissionDenied

The scale specified by S does not exist

The units specified by U is not valid

The scale is reporting an error condition

The accumulator is not enabled for the specified scale

NOTE: If the units specified by U are Secondary or Tertiary, the scale has to be either an A/D scale or a total scale.
If not A/D scale or a total scale then SysPermissionDenied will be returned.
NOTE: If the units specified by U are Primary, the scale can be any type.

SysOK

Example:
AccumValue : Real;

AccumValue ;= 110.5

SetAccum (1, Primary, AccumValue);

The function completed successfully

Table 5-6. Accumulator Operation Methods (Continued)

5.1.6 Scale Operation

Methods Description
CurrentScale Returns the number of the currently displayed scale
920! Method Signature:
820i :) .
880 function CurrentScale : Integer;
882D Example:
1280 ScaleNumber : Integer;
ScaleNumber := CurrentScale;
GetMode Sets M to the value representing the current display mode for scale S
ggg' Method Signature:
880| function GetMode (S : Integer; VAR M : Mode) : SysCode;
1280 Parameters:
[in] S Scale number
[out] M Current display mode
Mode values returned:
GrossMode Scale S is currently in gross mode
NetMode Scale S is currently in net mode
SysCode values returned:
SyslInvalidScale The scale specified by S does not exist or is a program scale
SysDeviceError The scale is reporting an error condition; M is still updated with the current display mode
SysOK The function completed successfully
Example:
CurrentMode : Mode;
GetMode (1, CurrentMode);
Table 5-7. Scale Operation Methods
|
48 Visit our website www.RiceLake.com ﬁ!&ﬁ G.'SAYSITSMES

https://www.ricelake.com

API Reference

Methods Description
GetUnits Sets U to the value representing the current display units for scale S
ggg: Method Signature:
880 function GetUnits (S : Integer; VAR U : Units) : SysCode;
1280 Parameters:
[in] S Scale number
[out] u Current display units
Units values returned:
Primary Primary units are currently displayed on scale S
Secondary Secondary units are currently displayed on scale S
Tertiary Tertiary units are currently displayed on scale S
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist or is a program scale
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully
Example:
CurrentUnits : Units;
GetUnits (1, CurrentUnits);
GetUnitsString Sets V to the text string representing the current display units for scale S
ggg: Method Signature:
880 function GetUnitsString (S : Integer; U : Units; VAR V : String) : SysCode;
1280 Parameters:
[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] v Current display units string
Units values sent:
Primary Get the Primary units string for scale S
Secondary Get the Secondary units string for scale S
Tertiary Get the Tertiary units string for scale S
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist or is a program scale
SyslInvalidUnits The units value specified by U does not exist
SysOK The function completed successfully
Example:
CurrentUnitsString : String;
GetUnitsString (1, Primary, CurrentUnitsString);
InCOZ Sets V to a non-zero value if scale S is within 0.25 grads of gross zero; If the condition is not met, V is set to zero
ggg: Method Signature:
880 function INCOZ (S : Integer; VAR V : Integer) : SysCode;
1280 Parameters:
[in] S Scale number
[in] v Center-of-zero value
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist or is a program scale
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully
Example:
ScaleAtCOZ : Integer;
InCOZ (1, ScaleAtCOZ);
Table 5-7. Scale Operation Methods (Continued)
|
RICE LAKE

© Rice Lake Weighing Systems e All Rights Reserved

49

iRite Programmer Manual

Methods Description
InMotion Sets V to a non-zero value if scale S is in motion; otherwise, V is set to zero
ggg' Method Signature:
880| function InMotion (S : Integer; VAR V : Integer) : SysCode;
1280 Parameters:
[in] S Scale number
[out] V' In-motion value
SysCode values returned:
SyslInvalidScale The scale specified by S does not exist or is a program scale
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully
Example:
ScalelnMotion : Integer;
InMotion (1, ScalelnMotion);
InRange Sets V to zero value if scale S is in an overload or underload condition; otherwise, V is set to a non-zero value
258' Method Signature:
880I function InRange (S : Integer; VAR V : Integer) : SysCode;
1280 Parameters:
[in] S Scale number
[out] V' In-range value
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist or is a program scale
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully
Example:
ScalelnRange : Integer;
InRange (1, ScalelnRange);
SelectScale Sets scale S as the current scale
ggg' Method Signature:
1 28(I) function SelectScale (S : Integer) : SysCode;
880 Parameters:
882D [in] S Scale number
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist; the current scale is not changed
SysOK The function completed successfully
Example:
SelectScale (1);

Table 5-7. Scale Operation Methods (Continued)

RICE LAKE

50 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods Description
SetMode Sets the current display mode on scale S to M
ggg: Method Signature:
880 function SetMode (S : Integer; M : Mode) : SysCode;
1280 Parameters:
[in] S Scale number
[in] M Scale mode
Mode values sent:
GrossMode Scale S is set to gross mode
NetMode Scale S is set to net mode
SysCode values returned:
SyslInvalidScale The scale specified by S does not exist or is a program scale
SyslInvalidMode The mode value M is not valid
SysDeviceError The scale is reporting an error condition; the mode is not changed
SysOK The function completed successfully
Example:
SetMode (1, GrossMode or NetMode);
SetUnits Sets the current display units on scale S to U
228: Method Signature:
880 function SetUnits (S : Integer; U : Units) : SysCode;
1280 Parameters:
[in] S Scale number
[in] U Scale units
Units values sent:
Primary Primary units will be displayed on scale S
Secondary Secondary units will be displayed on scale S
Tertiary Tertiary units will be displayed on scale S
SysCode values returned:
SyslnvalidRequest ~ The scale specified by S is a legal for trade or industrial serial scale
SyslInvalidScale The scale specified by S does not exist or is a program scale
SyslInvalidUnits The units value U is not valid
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully
Example:
SetUnits (1, Secondary);
ZeroScale Performs a gross zero scale operation for S
ggg: Method Signature:
880 function ZeroScale (S : Integer) : SysCode;
1280 Parameters:
[in] S Scale number
SysCode values returned:
SyslnvalidRequest ~ The scale specified by S is a legal for trade serial scale
SyslInvalidScale The scale specified by S does not exist or is a program scale
SysLFTViolation The zero operation would violate configured legal-for-trade restrictions for the specified scale;
No zero is performed
SysOutOfRange The zero operation would exceed the configured zeroing limit; No zero is acquired
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully
Example:
ZeroScale (1);
Table 5-7. Scale Operation Methods (Continued)
|
RICE LAKE

© Rice Lake Weighing Systems e All Rights Reserved 51

iRite Programmer Manual

Methods Description
GetCountBy Sets C to the real count-by value on scale S, in units U
920i Method Signature:
820 function GetCountBy (S : Integer; U : Units; VAR C : Real) : SysCode;
182%% Parameters:
[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] c Count-by value
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist
SyslInvalidUnits The units specified by U is not recognized
SyslnvalidRequest The scale specified by S does not support this operation (serial scale)
SysDeviceError The scale is reporting an error condition; C is still updated with the count-by value
SysOK The function completed successfully
Example:
CountBy : Real;
GetCountBy (1, Primary, CountBy);
GetGrads Sets G to the configured grad value of scale S
920i Method Signature:
820i function GetGrads (S : Integer; VAR G : Integer) : SysCode;
182%% Parameters:
[in] S Scale number
[out] G Grads value
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist
SyslnvalidRequest The scale specified by S does not support this operation (serial scale)
SysDeviceError The scale is reporting an error condition
SysOK The function completed successfully
Example:
Grads : Integer;
GetGrads (1, Grads);
SetDFStages Sets the digital filtering stage
1280 Method Signature:
function SetDFStages (S : Integer; S1: Integer; S2 : Integer; S3 : Integer) : SysCode;
Parameters:
[in] S Scale number
[in] S1 Stage 1
[in] S2 Stage 2
[in] S3 Stage 3
SysCode values returned:
SysinvalidRequest Invalid type
SysOutOfRange Values have not been assigned
SysOK The function completed successfully
Example:
SetDFStages (1, 4, 4, 4);
SetDFThresholds Sets the digital filtering threshold
1280 Method Signature:
function SetDFThresholds (S : Integer; Sensitivity : Integer; Threshold : Integer) : SysCode;
Parameters:
[in] S Scale number
[in] Sensitivity Sensitivity
[in] Threshold Threshold
SysCode values returned:
SysInvalidRequest Invalid type
SysOutOfRange Values have not been assigned
SysOK The function completed successfully

Table 5-7. Scale Operation Methods (Continued)

RICE LAKE

52 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

5.1.7 Calibration Data

Methods Description
GetLCCD Sets V to the calibrated deadload count for scale S
2%8: Method Signature:
880 function GetLCCD (S : Integer; VAR V : Integer) : SysCode;
1280 Parameters:
[in] S Scale number
[out] Vv Deadload count
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist
SyslnvalidRequest ~ The scale specified by S is not an A/D-based scale
SysOK The function completed successfully
GetLCCW Sets V to the calibrated span count for scale S
238: Method Signature:
880 function GetLCCW (S : Integer; VAR V : Integer) : SysCode;
1280 Parameters:
[in] S Scale number
[out] v Calibrated span count
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist
SyslnvalidRequest ~ The scale specified by S is not an A/D-based scale
SysOK The function completed successfully
GetLCCC Sets V to the calibrated load cell count at capacity for scale S
1280 Method Signature
function GetLCCC (S : Integer; VAR V : Integer) : SysCode;
Parameters:
[in] S Scale number
[out] v Load cell count at capacity
SysCode values returned:
SyslInvalidScale The scale specified by S does not exist
SysInvalidRequest The scale specified by S is not an A/D-based scale
SysOK The function completed successfully
GetWVal Sets V to the configured WVAL (test weight value) for scale S
ggg: Method Signature:
880 function GetWVal (S : Integer; VAR V : Real) : SysCode;
1280 Parameters:
[in] S Scale number
[out] Vv Test weight value
SysCode values returned:
SyslInvalidScale The scale specified by S does not exist
SysinvalidRequest ~ The scale specified by S is not an A/D-based scale
SysOK The function completed successfully
GetZeroCount Sets V to the amount of counts from calibrated deadload for scale S
ggg: Method Signature:
880 function GetZeroCount (S : Integer; VAR V : Integer) : SysCode;
1280 Parameters:
[in] S Scale number
[out] V' Deadload count
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist
SyslnvalidRequest ~ The scale specified by S is not an A/D-based scale
SysOK The function completed successfully
Table 5-8. Calibration Data Methods
I
’V‘E!GCHE G"A!SE © Rice Lake Weighing Systems e All Rights Reserved 53

iRite Programmer Manual

Methods Description
GetLiveZeroCounts |Sets V to the counts value of the live zero weight for scale S
1280 Method Signature:
function GetLiveZeroCounts (S : Integer; VAR V : Integer) : SysCode;
Parameters:
[in] S Scale number
[out] V' Live zero count
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist
SysInvalidRequest The scale specified by S is not an A/D-based scale
SysOK The function completed successfully
GetPBZeroCounts |Sets V to the counts value of the pushbutton zero for scale S
1280 Method Signature:
function GetPBZeroCounts (S : Integer; VAR V : Integer) : SysCode;
Parameters:
[in] S Scale number
[out] V' Live zero count

SysCode values returned:
SyslInvalidScale The scale specified by S does not exist
SysinvalidRequest ~ The scale specified by S is not an A/D-based scale
SysOK The function completed successfully

Table 5-8. Calibration Data Methods (Continued)

5.2 System Support

Methods Description

Date$ Returns a string representing the system date contained in DT

ggg' Method Signature:

880I function Date$ (DT : DateTime) : String;

882D

1280
DisableHandler Disables the specified event handler. See Section 6.1 on page 113 for a list of handlers

ggg' Method Signature:

880| procedure DisableHandler (handler);

882D SysCode values returned:

1280 SyslInvalidRequest The specified handler does not exist

SysOK The function completed successfully

Displayls Returns a true (non-zero) value if the display is suspended (using the SuspendDisplay procedure), or a false (zero) value if the
Suspended display is not suspended

ggg' Method Signature:

880| function DisplaylsSuspended : Integer;

882D

1280
EnableHandler Enables the specified event handler; see Section 6.1 on page 113 for a list of handlers

ggg' Method Signature:

880I procedure EnableHandler (handler);

882D SysCode values returned:

1280 SysInvalidRequest The specified handler does not exist

SysOK The function completed successfully
Table 5-9. System Support Methods
|
54 Visit our website www.RiceLake.com RICE LAKE

WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods Description

EventChar Returns a one-character string representing the character received on a communications port that caused the
920i PortxCharReceived event; If EventChar is called outside the scope of a PortxCharReceived event, EventChar returns a string
820 of length zero; See Section 6.1 on page 113 for information about the PortxCharReceived event handler
880 .
882D Method Signature:

1280 function EventChar : String;
Example:
handler Port4CharReceived;
strOneChar : string;
begin
strOneChar := EventChar;
end;

EventConnection Returns the name of the communications connection that caused the ConnectionCharReceived or Cmdx handler events;

1280 If EventConnection is called outside the scope of either of these events, a string of length zero is returned
Method Signature:
function EventConnection : string;

EventKey Returns an enumeration of type keys with the value corresponding to the key press that generated the event;
920i See Section 4.0 on page 35 for a definition of the Keys data type
820 Method Signature:

880 . i)
882D function EventKey : Keys;
1280 Example:

handler KeyPressed;

begin
if EventKey = ClearKey then
end if;

end;

EventPort Returns the communications port number that received an F#x serial command; This function extracts data from the
920i CmdxHandler event for the F#x command, if enabled (the CmdxHandler, if enabled, runs whenever a F#x command is received
820i on any serial port); If the CmdxHandler is not enabled, this function returns 0 as the port number
880 .
882D Method Signature:

1280 function EventPort : Integer,

EventString Returns the string sent with an F#x serial command; this function extracts data from the CmdxHandler event for the F#x
920i command, if enabled; The CmdxHandler, if enabled, runs whenever a F#x command is received on any serial port;

820 If the CmdxHandler is not enabled, or if no string is defined for the F#x command, this function returns a string of length zero
880 .
882D Method Signature:

1280 function EventString : String;
EventHid -
1280

EventWidget When used in the WidgetClicked handler, determines the activated display widget. The value returned is the widget number

1280 (1-999).
Method Signature:
function EventWidget : Integer;

GetConsecNum Returns the value of the consecutive number counter
920! Method Signature:
820i functi) .

880 unction GetConsecNum : Integer;
882D
1280

Table 5-9. System Support Methods (Continued)
|
RICE LAKE

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 55

iRite Programmer Manual

Methods Description
GetDate Extracts date information from DT and places the data in variables Year, Month, and Day
ggg: Method Signature: .
880 procedure GetDate (DT : DateTime; VAR Year : Integer; VAR Month : Integer; VAR Day : Integer);
882D Parameters:
1280 [in] DT DateTime variable name
[out] Year Year
[out] Month Month
[out] Day Day
GetlQData Returns data from a given iQUBE; the types that IQValType may be are: IQSys, IQPlat, IQRawLC, IQCorrLC, 1QZeroLC,
920i IQStatLC, IQScaleWt, and 1Q2StatusLC; IQSys returns the system weight value; IQPIat returns the millivolt value for the indexed
platform; IQRawLC returns the indexed raw load cell millivolt value; IQCorrLC returns the indexed corrected load cell millivolt
value; IQZeroLC returns the indexed load cell deadload millivolt value; IQStatLC returns the indexed load cell status; IQ2ScaleWt
returns the indexed scale weight value; IQSys and IQPIat are revised to also return the scale data; IQ2StatusLC returns the
indexed load cell status; The old IQStatLC is not supported and will return SysInvalidRequest
NOTE: When using with Firmware 4.xx/iQube2: The IQSys and IQPlat data types will return SysOk as long as the
command is correctly formatted (scale exists). To tell whether the iQUBE? is in an error condition, look at the value (not
the syscode) of the IQ2StatusLC data type.
Method Signature:
function GetlqubeData(port_no : integer; dataType : IQValType; index : integer; VAR data : real) : SysCode;
SysCode values returned:
SysOutOfRange The array index is less than or equal to 0
SysInvalidRequest ~ The requested port is not configured as an iQUBE; The value cannot be returned due to the
device configuration, trying to address load cell 17; Certain requests while the diagnostic
screen is open or an invalid data type is requested
SysDeviceError The scale is reporting an internal error
SysOK The function completed successfully
GetlQData Returns data from a given iQUBE; The types that IQValType may be are: IQSys, IQPlat, IQRawLC, IQCorrLC, IQZeroLC,
1280 IQStatLC, IQScaleWt, and 1Q2StatusLC; IQSys returns the system weight value; IQPIat returns the millivolt value for the indexed

platform; IQRawLC returns the indexed raw load cell millivolt value; IQCorrLC returns the indexed corrected load cell millivolt
value; IQZeroLC returns the indexed load cell deadload millivolt value; IQStatLC returns the indexed load cell status; IQ2ScaleWt
returns the indexed scale weight value; IQSys and IQPIat are revised to also return the scale data; IQ2StatusLC returns the
indexed load cell status; The old IQStatLC is not supported and will return SysInvalidRequest

NOTE: When using with Firmware 4.xx/iQube2: The IQSys and IQPlat data types will return SysOk as long as the

command is correctly formatted (i.e., scale exists). To tell whether the iQUBE? is in an error condition, look at the value
(not the syscode) of the IQ2StatusLC data type.

Method Signature:
function GetlQData(Connection Name : string; dataType : IQValType; index : integer; VAR data : real) : SysCode;

SysCode values returned:
SysOutOfRange The array index is less than or equal to 0

SysinvalidRequest ~ The requested port is not configured as an iQUBE; The value cannot be returned due to the
device configuration, trying to address load cell 17; Certain requests while the diagnostic
screen is open or an invalid data type is requested

SysDeviceError The scale is reporting an internal error
SysOK The function completed successfully

Table 5-9. System Support Methods (Continued)

RICE LAKE

56 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods Description
GetKey Waits for a key press from the indicator front panel before continuing the program; The optional time-out is specified in
920i 0.01-second intervals (1/100 seconds); If the wait time is set to zero, the procedure will wait indefinitely
820 Method Signature:
880 function GetKey (ti t: Int ;
882D unction GetKey (timeout : Integer);
1280 Parameters:
[in] timeout Time-out value
Example:
this_key : Keys;
DisplayStatus ("Press [Enter] for Yes");
this_key: = GetKey(0);
if this_key = EnterKey then
DisplayStatus ("Yes");
else
DisplayStatus ("No");
end if;
GetMACAddress Returns a string value of the read-only onboard MAC address
1280 Method Signature:
function GetMACAddress : String;
GetSoftware Returns the current software version
Version Method Signature:
238: function GetSoftwareVersion : String;
880
882D
1280
GetTime Extracts time information from DT and places the data in variables Hour, Minute, and Second
ggg' Method Signature:
880I procedure GetTime (DT : DateTime; VAR Hour : Integer; VAR Minute : Integer; VAR Second : Integer);
882D Parameters:
1280 [in] DT DateTime variable name
[out] Hour Hour
[out] Minute Minute
[out] Second Second
GetUID Returns the current unit identifier
ggg: Method Signature:
880 function GetUID : String;
882D
1280
Hardware Returns an array of HW_type; The elements of the array correspond to option card slots in the indicator; This API is useful for
920i determining the presence of option cards that are required or that could activate different options in the user program
820 Method Signature:
880
882D procedure Hardware(var hw : HW_array_type);
1280 SysCode values returned:
None
Table 5-9. System Support Methods (Continued)
|
RICE LAKE

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 57

iRite Programmer Manual

Methods Description
KeyPress Provides intrinsic functionality for a key; The following keys will have intrinsic function, in addition to the front panel keys already
920i in the Keys built-in type: TimeDateKey, WeighlnKey, WeighOutKey, ID_EntryKey, DisplayTareKey, TruckRegsKey,

820 DisplayAccumKey, ScaleSelectKey, DisplayROCKey, SetpointKey, BatchStartKey, BatchStopKey, BatchPauseKey,

880 BatchResetKey, DiagnosticsKey, ContactsKey, DoneKey, TestKey,ContrastKey, LLStopKey, LLGoKey, LLOffKey, AuditKey,
882D KeyedTareKey, ClearAccumKey, AuxPrintKey, USBKey (in 920i only), DatabaseKey (in 1280 only); The ContactsKey will actually
1280 function like the Dignostics softkey, while the DiagnosticsKey will go straight to the Diagnostics screen; The DoneKey will only

return from the contacts screen; The TestKey will allow the user program to test for strict weigh mode by not doing anything at all;
This API will only function in actual weigh mode

Method Signature:

function KeyPress (K : Keys) : SysCode;

SysCode values returned:

SyslInvalidMode The indicator is not actually in weigh mode; The TestKey will return SysinvalidMode for all
sub-modes of weigh mode (the contact screen) as well as any other mode (time & date entry,
or open prompt)

SyslInvalidKey Any Invalid key; softkeys and Undefined Keys are considered invalid

SysInvalidRequest ~ Processing the key returns invalid or error

SysOK The function completed successfully

LockKey Disables the specified front panel key; possible values are: ZeroKey, GrossNetKey, TareKey, UnitsKey, PrintKey, Soft1Key,
920i Soft2Key, Soft3Key, Soft4Key, Soft5Key, NavUpKey, NavRightKey, NavDownKey, NavLeftKey, EnterKey, N1Key, N2Key, N3Key,
820i N4Key, N5Key, N6Key, N7Key, N8Key, N9Key, NOKey, DecpntKey, ClearKey
880 .
882D Method Signature:

1280 function LockKey (K : Keys) : SysCode;
Parameters:
[in] K Key name
SysCode values returned:

SyslInvalidKey The key specified is not valid

SysOK The function completed successfully

LockKeypad Disables operation of the entire front panel keypad
ggg: Method Signature:

880 function LockKeypad : SysCode;
882D SysCode values returned:

1280 SysPermissionDenied

SysOK The function completed successfully

ProgramDelay Pauses the user program for the specified time; Delay time is entered in 0.01-second intervals (1/100 seconds, 100 = 1 second)
ggg: Method Signature:

880 procedure ProgramDelay (D : Integer);
882D Parameters:

1280 [in] D Delay time
Example:
ProgramDelay(200); —Pauses the program for 2 seconds

RestartNetworks Resets the network if connection is lost

1280

Method Signature:
function RestartNetworks : SysCode;

SysCode values returned:
SysOK The function completed successfully
SysDeviceError Function failed to reset

ResumeDisplay

Resumes a suspended display

ggg' Method Signature:
128(I) procedure ResumeDisplay;
Table 5-9. System Support Methods (Continued)
]
o8 Visit our website www.RiceLake.com RICE LAKE

WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods Description
SetConsecNum Sets V to the value of the consecutive number counter
ggg: Method Signature:
880 function SetConsecNum (V : Integer) : SysCode;
882D Parameters:
1280 [in] v Consecutive number
SysCode values returned:
SysOutOfRange The value specified is not in the allowed range; The consecutive number is not changed
SysOK The function completed successfully
SetDate Sets the date in DT to the values specified by Year, Month, and Day
ggg: Method Signature: _
880 function SetDate (VAR DT : DateTime; VAR Year : Integer; VAR Month : Integer; VAR Day : Integer) : SysCode;
882D Parameters:
1280 [out] DT DateTime variable name
[in] Year Year
[in] Month Month
[in] Day Day
SysCode values returned:
SysInvalidRequest Year, month, or day entry not valid
SysOK The function completed successfully
SetSoftkeyText Sets the text of softkey K (representing F1-F10) to the text specified by S
238: Method Signature:
1280 function SetSoftkeyText (K : Integer; S : String) : SysCode;
Parameters:
[in] K Softkey number
[in] S Softkey text
SysCode values returned:
SyslInvalidRequest Th;zt I2lalue specified for K is less than 1 or greater than 10, or does not represent a configured
softkey
SysOK The function completed successfully
SetSystemTime Sets the realtime clock to the value specified in DT
ggg: Method Signature: .
880 function SetSystemTime (DT : DateTime);
882D Parameters:
1280 [in] DT System DateTime
SetTime Sets the time in DT to the values specified by Hour, Minute, and Second
238: Method Signature:
880 function SetTime (VAR DT : DateTime; Hour : Integer; Minute : Integer; Second : Integer) : SysCode;
882D Parameters:
1280 [out] DT DateTime variable name
[in] Hour Hour
[in] Minute Minute
[in] Second Second
SysCode values returned:
SysInvalidRequest ~ Hour or minute entry not valid
SysOK The function completed successfully
SetUID Sets the unit identifier
920i NOTE: Changes made to the UID using the SetUID function are lost when the indicator power is cycled. When power is
820i restored, the UID is reset to the value at the last SAVE/EXIT from configuration mode.
8?3%?:) Methpd Signature: . .
1280 function SetUID (newid : String);
Parameters:
[in] newid Unit identifier
Table 5-9. System Support Methods (Continued)
|
RICE LAKE

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 59

iRite Programmer Manual

Methods Description
StartFTPServer Allows access for external devices to the FTP server; Password must be manually configured and ftp server must be enabled in
1280 configuration
Method Signature
function StartFTPServer : SysCode;
SysCode Values Returned
SysOK Started Successfully
SysInvalidFtpConfig FTP Server is not enabled in Features -> FTP -> FTP Enabled
SyslnvalidNetworkConfig Ethernet is not enabled in Communications -> Ethernet -> Enabled
SysFtpStartFailed ftp server did not start (not password related)
STick Returns the number of system ticks, in 1/1200th of a second intervals, since the indicator was powered on (1200 = 1 second)
ggg' Method Signature:
880| function STick : Integer;
882D NOTE: STick is maintained internally as an unsigned 32-bit integer. When the MSB rolls over, it appears as a large
1280 negative number. Then it becomes decreasingly negative before rolling over to zero and becoming positive again.
Ensure that calculations involving STick take these transitions into account. It takes 41-42 days of continuous operation
for the STick value to rollover completely. Cycling power resets the count.
StopFTPServer Shuts down access for external devices to the FTP server
1280 Method Signature:
function StopFTPServer : SysCode;
SysCode Value Returned:
SysOk Stopped Successfully
SuspendDisplay Suspends the display
920! Method Signature:
820i . i
1280 procedure SuspendDisplay;
SystemTime Returns the current system date and time
920! Method Signature:
820i . T .
880 function SystemTime : DateTime;
882D
1280
Time$ Returns a string representing the system time contained in DT
ggg' Method Signature:
880I function Time$ (DT : DateTime) : String;
882D
1280
UnlockKey Enables the specified front panel key; Possible values are: ZeroKey, GrossNetKey, TareKey, UnitsKey, PrintKey, Soft1Key,
920i Soft2Key, Soft3Key, Soft4Key, Soft5Key, NavUpKey, NavRightKey, NavDownKey, NavLeftKey, EnterKey, N1Key, N2Key, N3Key,
820 N4Key, N5Key, N6Key, N7Key, N8Key, N9Key, NOKey, DecpntKey, ClearKey
880 .
882D Method Signature:
1280 function UnlockKey (K : Keys) : SysCode;
Parameters:
[in] K Key name
SysCode values returned:
SyslInvalidKey The key specified is not valid
SysOK The function completed successfully
UnlockKeypad Enables operation of the entire front panel keypad
238' Method Signature:
880I function UnlockKeypad : SysCode;
882D SysCode values returned:
1280 SysPermissionDenied
SysOK The function completed successfully
Table 5-9. System Support Methods (Continued)
|
60 Visit our website www.RiceLake.com RICE LAKE

WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods Description

WaitForEntry Similar to GetEntry, WaitForEntry causes the user program to wait for operator input; Wait time is specified in 0.01-second

920i intervals (1/100 seconds); if the wait time is set to zero, the procedure will wait indefinitely or until the Enter key is pressed

820 NOTE: The UserEntry handler must be disabled (see DisableHandler on page 54) before using this procedure.

880 Method Signature:

882D .

1280 procedure WaitForEntry (I : Integer);

Parameters:
[in] | Wait time value

Table 5-9. System Support Methods (Continued)

5.3 Serial I/O

Methods Description
Print Requests a print operation using the print format specified by F; Output is sent to the port specified in the print format
920i configuration
820i . .
880 Method Signature:
882D function Print (F : PrintFormat) : SysCode;
1280 Parameters:
[in] F Print format
920i, 820i and 1280 PrintFormat values sent:
GrossFmt Gross format
NetFmt Net format
TrWInFmt Truck weigh-in format
TrRegFmt Truck register format (truck IDs and tare weights)
TrWOutFmt Truck weigh-out format
SPFmt Setpoint format
AccumFmt Accumulator format
AuxFmtx Aucxiliary format (x =1 - 20)
880 PrintFormat values sent:
GrossFmt Gross format
NetFmt Net format
SPFmt Setpoint format
AccumFmt Accumulator format
882D PrintFormat values sent:
PrintFormat1 Print format 1
PrintFormat2 Print format 2
PrintFormat3 Print format 3
PrintFormat4 Print format 4
SysCode values returned:
SyslnvalidRequest The print format specified by F does not exist
SysQFull The request could not be processed because the print queue is full
SysOK The function completed successfully
Example:
Fmtout : PrintFormat;
Fmtout ;= NetFmt
Print (Fmtout);
Table 5-10. Serial I/0 Methods
|
’V‘E!GCHE G"A!SE © Rice Lake Weighing Systems e All Rights Reserved 61

iRite Programmer Manual

Methods Description
Send Writes an ASCII representation of the in-memory bytes of the integer or real number specified in <number> to the port specified by P
ggg: Method Signature:
880 procedure Send (P : Integer; <number>);
882D Parameters:
1280 [in] P Serial port number
[in] <number> The integer or real number to output
Example:
Send (Port1, 123.55); —sends "<42><F7><19><9A>" (without the quotes or <> symbols) to Port 1
where:
<42> = 42 hex (66 decimal)
<F7> = FT hex (247 decimal)
<19> =19 hex (25 decimal)
<9A> = 9A hex (154 decimal)
Send (1, 4276803); —sends "<00>ABC" (without the quotes) to Port 1 - where <00> is an ASCII nul
SendChr Writes the single character specified to the port specified by P
920! Method Signature:
%%%' procedure SendChr (P : Integer; character : Integer);
882D Parameters:
1280 [in] P Serial port number
[in] character The decimal value of the character to transmit
Example:
SendChr (1, 65); —sends upper-case "A" (decimal 65) to Port 1
SendChrArray Writes a number of characters, specified by their decimal values in ChrArray, to the port specified by P. The range of values in the
920i array is 0-255. This API provides functionality similar to making repeated calls to the SendChr API, but without a transmission

delay between characters.

Method Signature:
function SendChrArray (P : Integer; data : ChrArray; Length : Integer) : SysCode;
Parameters:
[in] P Serial port number
[in] ChrArray The array of characters to output
[in] Length The number of bytes to transmit
SysCode values returned:
SysOutOfRange Length <1 or > 100
SyslInvalidPort The port number specified for P is not valid
SysOK The function completed successfully
Example:

data : ChrArray;

data[1]:=3;
data[2] := 4;
data[3] := 5;
data[4] := 6;
data[5] := 32;
data[6] :=0;
data[7]:= 77,

data[8] := 220;

SendChrArray (1, data, 8);

Table 5-10. Serial I/O Methods (Continued)

RICE LAKE

62 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods Description
SendNull Writes an ASCII null character (decimal 00) to the port specified by P
ggg' Method Signature:
880| procedure SendNull (P : Integer);
882D Parameters:
1280 [in] P Serial port number
Example:
SendNull (1); —sends an ASCII null character (decimal 00) to Port 1
SetPrintText Sets the value of the user-specified format (1-99) to the text specified; The text can be any string of up to 16-characters;
920i If a string of more than 16-characters is specified, nothing is printed
%%%' Method Signature:
882D function SetPrintText (fmt_num : Integer ; text : String) : Syscode;
1280 Parameters:
[in] fmt_num User-specified format number
[in] text Print format text
SysCode values returned:
SysOutOfRange The text is more than 16 characters
SyslnvalidRequest The specified format number is out of the range of 1-99
SysOK The function completed successfully
Example:

SetPrintText(1, "User Pgm. Text");

StartStreaming
920i
820i
880
882D

Starts data streaming for the port number specified by P; Streaming must be enabled for the port in the indicator configuration

Method Signature:
function StartStreaming (P : Integer) : SysCode;
Parameters:

[in] P Serial port number

SysCode values returned:
SyslInvalidPort
SyslInvalidRequest

The port number specified for P is not valid
The port specified for P is not configured for streaming

SysOK The function completed successfully
Example:
StartStreaming (1);
StartStreaming Starts data streaming for the stream format specified by S; Streaming must be enabled for the port in the indicator configuration
1280 Method Signature:
function StartStreaming (S : Integer) : SysCode;
Parameters:
[in] S Stream format number (1-4)
SysCode values returned:
SysinvalidRequest The stream format specified by S is not configured for streaming
SysOK The function completed successfully
Example:
StartStreaming (1);
StopStreaming Stops data streaming for the port number specified by P
ggg' Method Signature:
880| function StopStreaming (P : Integer) : SysCode;
882D Parameters:
[in] P Serial port number
SysCode values returned:
SyslnvalidPort The port number specified for P is not valid
SysInvalidRequest The port specified for P is not configured for streaming
SysOK The function completed successfully
Example:
StopStreaming (1);
Table 5-10. Serial I/O Methods (Continued)
I
RICE LAKE

© Rice Lake Weighing Systems e All Rights Reserved 63

iRite Programmer Manual

Methods Description
StopStreaming Stops data streaming for the stream format specified by S
1280 Method Signature:
function StopStreaming (S : Integer) : SysCode;
Parameters:
[in] S Stream format number (1-4)
SysCode values returned:
SysinvalidRequest ~ The stream format specified by S is not configured for streaming
SysOK The function completed successfully
Example:
StopStreaming (1);
Write Writes the text specified in the <arg-list> to the port specified by P; A subsequent Write or WriteLn operation will begin where this
920i Write operation ends; An End-of-Line termination is not included at the end of the data sent to the port
820i NOTE: This procedure cannot be used to send null characters. Use the SendChr or SendNull procedure to send null
880 characters.
?%g Method Signature:
procedure Write (P : Integer; <arg-list>);
Parameters:
[in] P Serial port number
[in] arg_list Print text
Example:
Write (1, "This is a test.");
WriteLn Writes the text specified in the <arg-list> to the port specified by P, followed by the End-of-Line termination character(s) specified
920i in the configuration parameters for the specified port; A subsequent Write or WriteLn operation begins on the next line
820i NOTE: This procedure cannot be used to send null characters. Use the SendChr or SendNull procedure to send null
880 characters.
?ggg Method Signature:
procedure Write (P : Integer; <arg-list>);
Parameters:
[in] P Serial port number
[in] arg_list Print text
Example:
WriteLn (1, "This is another test.");
WriteOut Writes the text specified in the <arg-list> to the connection named by C; A subsequent WriteOut or WriteOutLn operation will
1280 begin where this WriteOut operation ends; A carriage return is not included at the end of the data sent to the connection
Method Signature:
procedure WriteOut (C : String; <arg-list>);
Parameters:
[in] C Connection port number
[in] arg_list Print text
WriteOutLn Writes the text specified in the <arg-list> to the connection named by C, followed by a carriage return and a line feed (CR/LF);
1280 A subsequent WriteOut or WriteOutLn opteration begins on the next line
Method Signature:
procedure WriteOutLn (C : String; <arg-list>);
Parameters:
[in] C Connection port number
[in] arg_list Print text
Table 5-10. Serial I/O Methods (Continued)
|
64 Visit our website www.RiceLake.com RICE LAKE

WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

5.3.1 880 Port Numbering
Port Numbers Port Description
1 Com Port
2 USB Device Port
3 Ethernet Server
4 Ethernet Client
5 Serial Option Card- Channel 1
6 Serial Option Card- Channel 2
Table 5-11. Port Numbering Description
Advanced Printing
Methods Description
StartDocument Opens a connection to the printer setup in the Advanced Printer settings under the Features section; Must use this function before
(ADVPRN) writing any data to the printer
1280
EndDocument Closes the connection to the printer setup in the Advanced Printer setting under the Features section; Document will not print if
(ADVPRN) this is not used after a StartDocument API is used
1280 Method Signature:
Function(Connection : String) : Syscode;
Parameters:
[In] Connection This needs to be set to “ADVPRN"
SysCode values returned:
SysOK The function completed successfully
Example:
if StartDocument("ADVPRN") = SysOk then
Writeoutin("ADVPRN","String data to print");
else
DisplayStatus("Printer Error");
end if;
if EndDocument("ADVPRN") = SysOk then
DisplayStatus("Document Printed");
else
DisplayStatus("Printer Error");
end if;
Table 5-12. Advanced Printing Methods
|
’V‘E!GCHE (!-A'TSE © Rice Lake Weighing Systems e All Rights Reserved 65

iRite Programmer Manual

5.4 Program Scale

Methods Description
SubmitData Passes data from a user program to the scale processor; weight, mode, and tare values are provided by the user program;
920i The displayed weight is the weight value minus tare; Gross/net mode is set by the gn parameter regardless of whether a tare
1280 value is passed; This allows display of a net value when the net is known but gross and tare values are not available
820 NOTE: Because the user program supplies all weight data, weight data acquisition APIs are not valid for program scales.

When used with program scales, these APIs (including GetGross, GetNet, GetTare) will typically return a SysCode value
of SysinvalidScale. Always check the returned SysCode value of scale-related APIs to ensure valid data.

Syntax:
function SubmitData (scale : Integer; weight : Real; gn : Mode; units : UnitType; tare : Real) : SysCode;

SysCode values returned:

SyslInvalidScale The scale is not set up as a program scale
SysOK The function completed successfully
SubmitDSPData Submit data to a program scale; This function works much like SubmitData() but has fewer parameters; New to this function is the

dp : Decimal_Type that allows the program to set the decimal point for display; The call assumes Gross mode and primary units

Syntax:
function SubmitDSPData(scale : integer; weight : real; units : string; dp : Decimal_Type) : SysCode;
SysCode values returned:

SyslInvalidScale The scale is not set up as a program scale

SysOK The function completed successfully

Table 5-13. Program Scale Methods

5.5 Setpoints and Batching

NOTE: Unless otherwise stated, when an APl with a VAR parameter returns a SysCode value other than SysOK, the VAR
parameter is not changed.

Command Description
DisableSP Disables operation of setpoint SP
ggg' Method Signature:
880‘ function DisableSP (SP : Integer) : SysCode;
882D Parameters:
1280 [in] SP Setpoint number

SysCode values returned:
SyslnvalidSetpoint The setpoint specified by SP does not exist
SysBatchRunning Setpoint SP cannot be disabled while a batch is running
SyslnvalidRequest The setpoint specified by SP cannot be enabled or disabled

SysOK The function completed successfully
Example:
DisableSP (4);
EnableSP Enables operation of setpoint SP
ggg' Method Signature:
880I function EnableSP (SP : Integer) : SysCode;
882D Parameters:
1280 [in] SP Setpoint number

SysCode values returned:
SyslinvalidSetpoint The setpoint specified by SP does not exist
SysBatchRunning Setpoint SP cannot be enabled while a batch is running
SyslnvalidRequest ~ The setpoint specified by SP cannot be enabled or disabled
SysOK The function completed successfully

Example:
EnableSP (4);

Table 5-14. Setpoint and Batching Commands

RICE LAKE

66 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Command Description
GetBatchingMode |Returns the current batching mode (BATCHNG parameter)
ggg: Method Signature: .
880 function GetBatchingMode : BatchingMode;
882D BatchingMode values returned:
1280 Off Batching mode is off
Auto Batching mode is set to automatic
Manual Batching mode is set to manual
NOTE: The 882D does not have an Auto Batching mode.
GetBatchStatus Sets S to the current batch status
ggg: Method Signature:
880 function GetBatchStatus (VAR S : BatchStatus) : SysCode;
882D Parameters:
1280 [out] S Batch status
BatchStatus values returned:
BatchComplete The batch is complete
BatchStopped The batch is stopped
BatchRunning A batch routine is in progress
BatchPaused The batch is paused
SysCode values returned:
SysInvalidRequest ~ The BATCHNG configuration parameter is set to OFF
SysOK The function completed successfully
GetCurrentSP Sets SP to the number of the current batch setpoint
238: Method Signature:
880 function GetCurrentSP (VAR SP : Integer) : Syscode;
882D Parameters:
1280 [out] SP Setpoint number
SysCode values returned:
SysInvalidRequest ~ The BATCHNG configuration parameter is set to OFF
SysBatchNotRunning No batch routine is running
SysOK The function completed successfully
Example:
CurrentSP : Integer;
GetCurrentSP (CurrentSP);
WriteLn (1, "Current setpoint is " + IntegerToString(CurrentSP,0);
GetSPBand Sets V to the current band value (BANDVAL parameter) of the setpoint SP
238: Method Signature:
880 function GetSPBand (SP : Integer; VAR V : Real) : SysCode;
1280 Parameters:
[in] SP Setpoint number
[out] v Band value
SysCode values returned:
SyslInvalidSetpoint Thte sgt?oint number specified by SP is less than 1 or greater than the maximum number of
setpoints
SyslnvalidRequest The setpoint specified by SP has no band value (BANDVAL) parameter
SysOK The function completed successfully.
Example:
SP7Bandval : Real;
GetSPBand (7, SP7BAndval);
WriteLn (1, "Current Band Value of SP7 is " + RealToString(SP7Bandval,0,2));
Table 5-14. Setpoint and Batching Commands (Continued)
|
RICE LAKE

© Rice Lake Weighing Systems e All Rights Reserved 67

iRite Programmer Manual

Command Description
GetSPCaptured Sets V to the weight value that satisfied the setpoint SP
ggg' Method Signature:
880| function GetSPCaptured (SP : Integer; VAR V : Real) : SysCode;
882D Parameters:
1280 [in] SP Setpoint number
[out] v Captured weight value
SysCode values returned:
SyslnvalidSetpoint ~ The setpoint number specified by SP is less than 1 or greater than the maximum number of
setpoints
SysInvalidRequest ~ The setpoint is off and has no captured value
SysOK The function completed successfully
GetSPCount For DINCNT setpoints, sets Count to the value specified for setpoint SP
920i Method Signature:
18225(') function GetSPCount (SP : Integer; VAR Count : Integer) : SysCode;
Parameters:
[in] SP Setpoint number
[out] Count Count value
SysCode values returned:
SyslInvalidSetpoint The setpoint number specified by SP is less than 1 or greater than the maximum number of
setpoints
SyslnvalidRequest The specified setpoint is not a DINCNT setpoint
SysOK The function completed successfully
GetSPDuration For time of day (TOD) setpoints, sets DT to the current trip duration (DURATION parameter) of setpoint SP
920i Method Signature:
fzzg(') function GetSPDuration (SP : Integer; VAR DT : DateTime) : SysCode;
Parameters:
[in] SP Setpoint number
[out] DT Setpoint trip duration
SysCode values returned:
SyslInvalidSetpoint The setpoint specified by SP does not exist
SyslnvalidRequest The setpoint specified by SP has no DURATION parameter
SysOK The function completed successfully
Example:
SP3DUR : DateTime;
GetSPTime (3, SP3DUR);
WriteLn (Port1, "Current Trip Duration of SP3 is", SP3DUR);
GetSPHyster Sets V to the current hysteresis value (HYSTER parameter) of the setpoint SP
920i Method Signature:
88%‘())' function GetSPHyster (SP : Integer; VAR V : Real) : SysCode;
1280 Par.ameters: .
[in] SP Setpoint number
[out] v Hysteresis value

SysCode values returned:
SyslnvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no hysteresis HYSTER) parameter
SysOK The function completed successfully

Example:
SP5Hyster : Real;

éétSPHyster (5, SP5Hyster);
WriteLn (1, "Current Hysteresis Value of SP5 is " + RealToString(SP5Hyster,0,2));

Table 5-14. Setpoint and Batching Commands (Continued)

RICE LAKE

68 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Command Description
GetSPNSample For averaging (AVG) setpoints, sets N to the current number of samples (NSAMPLE parameter) of the setpoint SP
920? Method Signature:
820 function GetSPNSample (SP : Integer; VAR N : Integer) : SysCode;
Parameters:
[in] SP Setpoint number
[out] N Sample value
SysCode values returned:
SyslInvalidSetpoint The setpoint specified by SP does not exist
SyslnvalidRequest The setpoint specified by SP has no NSAMPLE parameter
SysOK The function completed successfully
Example:
SP5NS : Integer;
GetSPNSample (5, SPSNS);
WriteLn (1, "Current NSample Value of SP5 is " + IntegerToString(SP5NS,0));
GetSPPreact Sets V to the current preact value (PREACT parameter) of the setpoint SP
ggg' Method Signature:
880I function GetSPPreact (SP : Integer; VAR V : Real) : SysCode;
882D Parameters:
1280 [in] SP Setpoint number
[out] v Preact value
SysCode values returned:
SyslnvalidSetpoint The setpoint specified by SP does not exist
SyslnvalidRequest The setpoint specified by SP has no preact (PREACT) parameter
SysOK The function completed successfully
Example:
SP2Preval : Real;
GetSPPreact (2, SP2Preval);
WriteLn (1, "Current Preact Value of SP2 is " + RealToString(SP2Preval,0,2));
GetSPPreCount Sets Count to the preact count value (PCOUNT parameter) of DINCNT type setpoint SP
ggg' Method Signature:
1 28(|) function GetSPPreCount (SP : Integer; VAR Count : Integer) : SysCode;
Parameters:
[in] SP Setpoint number
[out] Count Preact count value
SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP is not DINCNT type parameter
SysOK The function completed successfully
Example:
SP3PCount : Integer;
GetSPPreCount (3, SP3PCount);
WriteLn (1, "Current Preact Learn Value of SP3is " + IntegerToString(SP3PCount,0));
Table 5-14. Setpoint and Batching Commands (Continued)
|
RICE LAKE

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved

69

iRite Programmer Manual

Command Description
GetSPTime For time of day (TOD) setpoints, sets DT to the current trip time (TIME parameter) of the setpoint SP
ggg: Methpd Signatuye: .
1280 function GetSPTime (SP : Integer; VAR DT : DateTime) : SysCode;
Parameters:
[in] SP Setpoint number
[out] DT Current setpoint trip time
SysCode values returned:
SyslnvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no TIME parameter
SysOK The function completed successfully
Example:
SP2TIME : DateTime;
GetSPTime (2, SP2TIME);
WriteLn (Port1, "Current Trip Time of SP2 is", SP2TIME);
GetSPValue Sets V to the current value (VALUE parameter) of the setpoint SP
ggg: Method Signature:
880 function GetSPValue (SP : Integer; VAR V : Real) : SysCode;
882D Parameters:
1280 [in] SP Setpoint number
[out] v Setpoint value
SysCode values returned:
SyslnvalidSetpoint The setpoint specified by SP does not exist
SyslnvalidRequest The setpoint specified by SP has no VALUE parameter
SysOK The function completed successfully
Example:
SP4Val : Real;
GetSPValue (4, SP4Val);
WriteLn (1, "Current Value of SP4 is " + RealToString(SP4Val,0,2));
GetSPVover For checkweigh (CHKWEI) setpoints, sets V to the current overrange value (VOVER parameter) of the setpoint SP
ggg: Method Signature:
function GetSPVover (SP : Integer; VAR V : Real) : SysCode;
Parameters:
[in] SP Setpoint number
[out] v Overrange value

SysCode values returned:
SyslnvalidSetpoint The setpoint specified by SP does not exist
SysinvalidRequest ~ The setpoint specified by SP has no VOVER parameter
SysOK The function completed successfully

Example:
SP3VOR : Real;

GetSPVover (3, SP3VOR);
WriteLn (1, "Current Overrange Value of SP3 is " + RealToString(SP3VOR,0,2));

Table 5-14. Setpoint and Batching Commands (Continued)

RICE LAKE

70 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Command Description
GetSPVunder For checkweigh (CHKWEI) setpoints, sets V to the current underrange value (VUNDER parameter) of the setpoint SP
ggg: Method Signature:
function GetSPVunder (SP : Integer; VAR V : Real) : SysCode;
Parameters:
[in] SP Setpoint number
[out] Vv Underrange value
SysCode values returned:
SyslnvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no VUNDER parameter
SysOK The function completed successfully
Example:
SP4VUR : Real;
GetSPVunder (4, SP4VUR);
WriteLn (1, "Current Underrange Value of SP4 is " + RealToString(SP4VUR,0,2));
PauseBatch Initiates a latched pause of a running batch process
ggg: Method Signature:
880 function PauseBatch : SysCode;
882D SysCode values returned:
1280 SysPermissionDenied The BATCHNG configuration parameter is set to OFF
SysBatchRunning No batch routine is running
SysOK The function completed successfully
ResetBatch Terminates a running, stopped, or paused batch process and resets the batch system
228: Method Signature:
880 function ResetBatch : SysCode;
882D SysCode values returned:
1280 SysPermissionDenied The BATCHNG configuration parameter is set to OFF
SysBatchRunning No batch routine is running
SysOK The function completed successfully
SaveSetpoint Saves setpoint changes made in iRite to permanent memory
Updates Method Signature:
1280 function SavesetpointUpdates;
Parameters:
None
SysCode values returned:
None
SetBatchingMode | Sets the batching mode (BATCHNG parameter) to the value specified by M
ggg: Methpd Signaturg: .
880 function SetBatchingMode (M : BatchingMode) : SysCode;
882D Parameters:
1280 [in] SP Setpoint number
[in] M Batching mode
BatchingMode values sent:
off Batching mode is off
Auto Batching mode is set to automatic
Manual Batching mode is set to manual
NOTE: The 882D does not have an Auto Batching mode.
SysCode values returned:
SyslInvalidMode The batching mode specified by M is not valid
SysOK The function completed successfully
Table 5-14. Setpoint and Batching Commands (Continued)
|
RICE LAKE

© Rice Lake Weighing Systems e All Rights Reserved

7

iRite Programmer Manual

Command Description
SetSPBand Sets the band value (BANDVAL parameter) of setpoint SP to the value specified by V
ggg: Method Signature:
880 function SetSPBand (SP : Integer; V : Real) : SysCode;
1280 Parameters:
[in] SP Setpoint number
[in] v Band value
SysCode values returned:
SyslnvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no band value (BANDVAL) parameter
SysBatchRunning The value cannot be changed because a batch process is currently running
SysOK The function completed successfully
Example:
SP7Bandval : Real;
SP7Bandval :=10.0
SetSPBand (7, SP7Bandval);
SetSPCount For DINCNT setpoints, sets the VALUE parameter of setpoint SP to the value specified by Count
ggg: Method Signature:
1280 function SetSPCount (SP : Integer; Count : Integer) : SysCode;
Parameters:
[in] SP Setpoint number
[in] Count Count value
SysCode values returned:
SyslnvalidSetpoint Thte sgt?oint number specified by SP is less than 1 or greater than the maximum number of
setpoints
SysInvalidRequest The specified setpoint is not a DINCNT setpoint
SysOK The function completed successfully
SetSPDuration For time of day (TOD) setpoints, sets the trip duration (DURATION parameter) of setpoint SP to the value specified by DT
238: Method Signature: .
1280 function SetSPDuration (SP : Integer; DT : DateTime) : SysCode;
Parameters:
[in] SP Setpoint number
[in] DT Setpoint trip duration

SysCode values returned:
SyslInvalidSetpoint The setpoint specified by SP does not exist
SyslnvalidRequest The setpoint specified by SP has no DURATION parameter
SysBatchRunning The value cannot be changed because a batch process is currently running
SysOutOfRange The value specified for DT is not in the allowed range for setpoint SP
SysOK The function completed successfully

Example:
SP3DUR : DateTime;

SP3DUR :=00:3:15
SetSPDuration (3, SP3DUR);

Table 5-14. Setpoint and Batching Commands (Continued)

RICE LAKE

72 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Command Description
SetSPHyster Sets the hysteresis value (HYSTER parameter) of setpoint SP to the value specified by V
ggg' Method Signature:
880| function SetSPHyster (SP : Integer; V : Real) : SysCode;
1280 Parameters:
[in] SP Setpoint number
[in] v Hysteresis value
SysCode values returned:
SyslnvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no hysteresis (HYSTER) parameter
SysBatchRunning The value cannot be changed because a batch process is currently running
SysOK The function completed successfully
Example:
SP5Hyster : Real;
SP5Hyster := 15.0;
SetSPHyster (5, SP5Hyster);
SetSPNSample For averaging (AVG) setpoints, sets the number of samples (NSAMPLE parameter) of setpoint SP to the value specified by N
ggg' Method Signature:
! function SetSPNSample (SP : Integer; N : Integer) : SysCode;
Parameters:
[in] SP Setpoint number
[in] N Sample value
SysCode values returned:
SyslnvalidSetpoint The setpoint specified by SP does not exist.
SyslnvalidRequest The setpoint specified by SP has no NSAMPLE parameter.
SysBatchRunning The value cannot be changed because a batch process is currently running.
SysOutOfRange The value specified for N is not in the allowed range for setpoint SP.
SysOK The function completed successfully.
Example:
SP5NS : Integer;
SP5NS :=10
SetSPNSample (5, SP5NS);
SetSPPreact Sets the preact value (PREACT parameter) of setpoint SP to the value specified by V
238' Method Signature:
880I function SetSPPreact (SP : Integer; V : Real) : SysCode;
882D Parameters:
1280 [in] SP Setpoint number
[in] Vv Preact value
SysCode values returned:
SyslInvalidSetpoint The setpoint specified by SP does not exist
SyslnvalidRequest The setpoint specified by SP has no preact (PREACT) parameter
SysBatchRunning The value cannot be changed because a batch process is currently running
SysOK The function completed successfully
Example:
SP2PreVal : Real;
SP2PreVal := 30.0;
SetSPPreact (2, SP2PreVal);
Table 5-14. Setpoint and Batching Commands (Continued)
|
’V‘E!GCHE G"A!SE © Rice Lake Weighing Systems e All Rights Reserved 73

iRite Programmer Manual

Command Description
SetSPPreCount Sets the preact count value (PCOUNT parameter) of setpoint SP to the value specified by Count
ggg: Method Signature:
880 function SetSPPreCount (SP : Integer; Count : Integer) : SysCode;
1280 Parameters:
[in] SP Setpoint number
[in] Count Preact count value
SysCode values returned:
SyslnvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP is not type DINCNT or Count is less than 0
SysOK The function completed successfully
Example:
SP3PCount : Integer;
SP3Pcount := 4;
SetSPPreCount (3, SP3PCount);
SetSPTime For time of day (TOD) setpoints, sets the trip time (TIME parameter) of setpoint SP to the value specified by DT
238: Method Signature:
function SetSPTime (SP : Integer; DT : DateTime) : SysCode;
Parameters:
[in] SP Setpoint number
[in] DT Setpoint trip time
SysCode values returned:
SyslInvalidSetpoint The setpoint specified by SP does not exist
SyslnvalidRequest ~ The setpoint specified by SP has no TIME parameter
SysBatchRunning The value cannot be changed because a batch process is currently running
SysOutOfRange The value specified for DT is not in the allowed range for setpoint SP
SysOK The function completed successfully
Example:
SP2TIME : DateTime;
SP2TIME := 08:15:00
SetSPTime (2, SP2TIME);
SetSPTime For time of day (TOD) setpoints, sets the trip time (TIME parameter) of setpoint SP to the value specified by DT
1280 Method Signature:
function SetSPTime (SP : Integer; DT : DateTime) : SysCode;
Parameters:
[in] SP Setpoint number
[in] DT Setpoint trip time

SysCode values returned:
SyslInvalidSetpoint ~ The setpoint specified by SP does not exist
SyslnvalidRequest The setpoint specified by SP has no TIME parameter
SysBatchRunning The value cannot be changed because a batch process is currently running
SysOutOfRange The value specified for DT is not in the allowed range for setpoint SP
SysOK The function completed successfully

Example:
SP2TIME : DateTime;

SetTime (SP2Time, 08, 15, 00);
SetSPTime (2, SP2Time);

Table 5-14. Setpoint and Batching Commands (Continued)

RICE LAKE

74 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Command Description
SetSPValue Sets the value (VALUE parameter) of setpoint SP to the value specified by V
ggg: Method Signature:
880 function SetSPValue (SP : Integer; V : Real) : SysCode;
882D Parameters:
1280 [in] SP Setpoint number
[in] v Setpoint value
SysCode values returned:
SyslnvalidSetpoint The setpoint specified by SP does not exist
SysInvalidRequest The setpoint specified by SP has no VALUE parameter
SysBatchRunning The value cannot be changed because a batch process is currently running
SysOutOfRange The value specified for V is not in the allowed range for setpoint SP
SysOK The function completed successfully
Example:
SP4Val : Real;
SP4Val := 350.0;
SetSPValue (4, SP4Val);
SetSPVover For checkweigh (CHKWEI) setpoints, sets the overrange value (VOVER parameter) of setpoint SP to the value specified by V
ggg: Method Signature:
function SetSPVover (SP : Integer; V : Real) : SysCode;
Parameters:
[in] SP Setpoint number
[in] v Overrange value
SysCode values returned:
SyslnvalidSetpoint The setpoint specified by SP does not exist
SyslnvalidRequest ~ The setpoint specified by SP has no VOVER parameter
SysOK The function completed successfully
Example:
SP3VOR : Real;
SP3VOR :=35.5
SetSPVover (3, SP3VOR);
SetSPVunder For checkweigh (CHKWEI) setpoints, sets the underrange value (VUNDER parameter) of setpoint SP to the value specified by V
ggg: Method Signature:
function SetSPVunder (SP : Integer; V : Real) : SysCode;
Parameters:
[in] SP Setpoint number
[in] v Underrange
SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist
SyslnvalidRequest The setpoint specified by SP has no VUNDER parameter
SysOK The function completed successfully
Example:
SP4VUR : Real;
SP4VUR :=26.4
SetSPVunder (4, SP4VUR);
StartBatch Starts or resumes a batch run
ggg: Method Signature:
880 function StartBatch : SysCode;
882D SysCode values returned:
1280 SysPermissionDenied The BATCHNG configuration parameter is set to OFF
SysBatchRunning A batch process is already in progress
SysOK The function completed successfully
Table 5-14. Setpoint and Batching Commands (Continued)
|
RICE LAKE

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 75

iRite Programmer Manual

Command Description
StopBatch Stops a currently running batch

ggg' Method Signature:

880| function StopBatch : SysCode;

882D SysCode values returned:

1280 SysPermissionDenied The BATCHNG configuration parameter is set to OFF
SysBatchNotRunning No batch process is running
SysOK The function completed successfully

Table 5-14. Setpoint and Batching Commands (Continued)

5.6 Digital /O Control

In the following digital 1/O control functions, slot 0 represents the digital I/O available on the CPU board of the indicator. The
920i supports six onboard bits, the 880 and 882D both support four, and the 820i and 1280 both support eight. Digital I/O on
expansion boards each support 24-bits.

Command Description
GetDigAll Sets V to the bitmasked value of all inputs/outputs in slot S; See SetAllDigOut on page 78 for explanation of bitmasked integer
1280 Method Signature:
function GetDigAll (S : Integer; VARV : Integer) : SysCode;
Parameters:
[in] S Slot number
[out] v Digital 10 status
SysCode Values Returned:
SyslnvalidRequest The slot does not contain a valid DIO Card
SysOK SysOK The function completed successfully
Example:
dioStatus : integer;
GetDigAll(0, dioStatus);

GetDigin Sets V to the value of the digital input assigned to slot S, bit D; GetDigin sets the value of V to 0 if the input is on, to 1 if the input
920i is off. Note that the values returned are the reverse of those used when setting an output with the SetDigout function; GetDigin
820i can monitor any digital I/O point that is not configured as OFF or OUTPUT
880 Method Signature:

?ggg function GetDigin (S : Integer; D : Integer; VAR V : Integer) : SysCode;
Parameters:
[in] S Slot number
[in] D Bit number
[out] v Digital input status
SysCode values returned:
SyslnvalidRequest The slot and bit assignment specified is not a valid digital input
SysOK The function completed successfully
Example:
DIGINSOBS : Integer;
GetDigin (0, 3, DIGINSOB3):
WriteLn (1, "Digin SOB3 status is " + IntegerToString(DIGINS0B3,0));
Table 5-15. Digital I/O Control Commands
|
76 Visit our website www.RiceLake.com RICE LAKE

WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Command Description
GetDigout Sets V to the value of the digital output assigned to slot S, bit D; GetDigout sets the value of V to 0 if the output is off, to 1 if the
920i outputis on
820i Method Signature:
888820D function GetDigout (S : Integer; D : Integer; VAR V : Integer) : SysCode;
1280 Parameters:
[in] S Slot number
[in] D Bit number
[out] V' Digital output status

SysCode values returned:
SysInvalidRequest The slot and bit assignment specified is not a valid digital output
SysOK The function completed successfully

Example:

DIGOUTSO0B2 : Integer;

GetDigout (0, 2, DIGOUTS0BY);
WriteLn (1, "Digout SOB2 status is " + IntegerToString(DIGOUTS0B2,0));

SetAllDigOutOff
1280

Sets all digital outputs on slotNum to off

Method Signature
function SetAllDigOutOff (S : Integer) : SysCode;
Parameters:
[in] S Slot number
SysCodes returned
SyslnvalidRequest The slot and bit assignment specified is not a valid digital output
SysOK The function completed successfully
SetDigout Sets value of the digital output assigned to slot S, bit D, to the value specified by V; det V to 1 to turn the specified output on; set
920i V to 0 to turn the output off
820i Method Signature:
8%820D function SetDigout (S : Integer; D : Integer; V : Integer) : SysCode;
1280 Parameters:
[in] S Slot number
[in] D Bit number
[in] V' Digital output status
SysCode values returned:
SyslnvalidRequest ~ The slot and bit assignment specified is not a valid digital output
SysOutOfRange The value V must be 0 (inactive) or 1 (active)
SysOK The function completed successfully
Example:
DIGOUTSO0B2 : Integer;
DIGOUTS0B2 = 0;
SetDigout (0, 2, DIGOUTS0B2);
Table 5-15. Digital I/0 Control Commands (Continued)
I
RICE LAKE

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 77

iRite Programmer Manual

Command Description
SetAlIDigOut Allows the application to set the state of a bank/card of outputs with a single function call vs. a series of individual calls.
1280 Method Signature:
function SetAllDigOut (S : Integer, | : Integer) : SysCode;
Parameters:
[in] S Slot number that the DIO card is in
[in] | Bitmasked integer for all outputs (see bitmask explanation below)

SysCode values returned:
SyslnvalidRequest The slot and bit assignment specified is not a valid digital output
SysOK The function completed successfully

For example:
SetAIIDiggut command sets the input/output states of the DIO card using a bitmasked decimal number converted from a binary
number. The binary number represents output states of each output, read from right to left. A value of 1 sets the output to ON and
a value of 0 sets the output to OFF. To convert a binary number to a bitmasked decimal, correlate each bit from right to left with a
consecutive integer as follows:

« Bit1=20=1

« Bit2=2"=2

. Bit3=22=4

. Bit4=23=8

. Bit5=2*=16
Continue consecutively up to 8 values (27) for onboard DIO and up to 24 values (22°) for DIO cards. The bitmasked decimal
integer is the sum of all of the integers that are set to ON or 1
SetAlIDigOut(3, 68)
DIO card is in slot 3; bits 3 and 7 are ON
68 = (22 + 25) or 68 = 4 + 64 Binary number is: 01000100 (read right to left)
SetAlIDigOut(0, 86)
Onboard DIO; bits 2, 3, 5 and 7 are ON
86=(2"+22+ 2%+ 25 0r 86= 2 + 4 + 16 + 64 Binary number is; 01010110 (read right to left)

Table 5-15. Digital I/O Control Commands (Continued)

5.7 Fieldbus Data

Methods Description
GetFBStatus Returns the status word for the specified fieldbus, see appropriate fieldbus addendum for a description of the status word format
1922&') Method Signature:
function GetFBStatus (fieldbus_no : Integer; scale_no : Integer; VAR status : Integer) : SysCode;
Parameters:
[in] fieldbus_no Fieldbus number
[in] scale_no Scale number
[out] status Fieldbus status
SysCode values returned:
SyslInvalidRequest
SysOK The function completed successfully
Getlmage For integer data, Getimage returns the content of the Busimage for the specified fieldbus
?22&') Method Signature:
function Getimage (fieldbus_no : Integer; VAR data : Busimage) : SysCode;
Parameters:
[in] fieldbus_no Fieldbus number
[out] Busimage Bus image

SysCode values returned:
SyslInvalidRequest
SysOK The function completed successfully

Table 5-16. Fieldbus Methods

RICE LAKE

78 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods Description
GetlmageReal For real data, Getimage returns the content of the BusimageReal for the specified fieldbus
1955(;)(; Method Signature:
function GetimageReal (fieldbus_no : Integer; VAR data : BusimageReal) : SysCode;
Parameters:
[in] fieldbus_no Fieldbus number
[out] BusimageReal Busimage
SysCode values returned:
SyslInvalidRequest
SysOK The function completed successfully
Setlmage For integer data, Setimage sets the content of the BusImage for the specified fieldbus
1922&') Method Signature:
function Setimage (fieldbus_no : Integer; data : Busimage) : SysCode;
Parameters:
[in] fieldbus_no Fieldbus number
[in] Busimage Bus image

SysCode values returned:
SyslInvalidRequest
SysOK The function completed successfully

SetlmageReal
920i
1280

For real data, SetimageReal sets the content of the BusimageReal for the specified fieldbus

Method Signature:
function Setimage (fieldbus_no : Integer; data : BusimageReal) : SysCode;
Parameters:

[in] fieldbus_no Fieldbus number

[in] BusimageReal Busimage

SysCode values returned:
SyslInvalidRequest
SysOK The function completed successfully

Table 5-16. Fieldbus Methods (Continued)

5.8 Analog Output Operation

Methods Description
SetAlgout Sets the analog output card in slot S to the percentage P; Negative P values are set to zero; Values greater than 100.0 are set to 100.0
ggg' Method Signature:
880I function SetAlgout (S : Integer; P : Real) : SysCode;
882D Parameters:
1280 [in] S Slot number
[in] P Analog output percentage value
SysCode values returned:
SyslnvalidPort The specified slot (S) is not a valid analog output
SyslnvalidRequest ~ The analog output is not configured from program control
SysOK The function completed successfully
Table 5-17. Analog Output Operation Methods
|
RICE LAKE

© Rice Lake Weighing Systems e All Rights Reserved 79

iRite Programmer Manual

5.9 Email
Methods Description
SendEmail Sends email through configured email server using the to, from, subject and body specified in the API call.
1280 Method Signature:
function SendEmail (TO : String; FROM : string; SUBJECT : string; BODY : string) : SysCode;
Parameters:
<Self Explanatory>

SysCode values returned:

SyslInvalidToAddress Supplied to address is not in the correct format;

This does not check if the to address actually exists only if the format is correct
Supplied from address is not in the correct format;

This does not check if the to address actually exists only if the format is correct
Supplied subject is not within length limits;

Subject length must be greater than 0 and less than or equal to 128 characters

There is an issue with the email configuration in the 1280 setup;

Possibilities include incorrect port, incorrect address, invalid username/password and
connectivity issues

SyslnvalidFromAddress
SyslInvalidSubject

SyslInvalid NetworkConfig

SendEmailFormat
1280

Sends email through configured email server using the to, from, subject and body specified in the API call. The print format is
generated and then used as the body of the email.

Method Signature:
function SendEmailFormat (TO : String; FROM : string; SUBJECT : string; PF : PrintFormat) : SysCode;

Parameters:
<Self Explanatory>

SysCode values returned:

SyslnvalidToAddress Supplied to address is not in the correct format;

This does not check if the to address actually exists only if the format is correct
Supplied from address is not in the correct format;

This does not check if the to address actually exists only if the format is correct
Supplied subject is not within length limits;

Subject length must be greater than 0 and less than or equal to 128 characters

There is an issue with the email configuration in the 1280 setup;

Possibilities include incorrect port, incorrect address, invalid username/password and
connectivity issues

SyslInvalidFromAddress
SyslInvalidSubject

SyslInvalid NetworkConfig

Table 5-18. Analog Output Operation Methods

5.10 Pulse Input Operation

Methods Description
ClearPulseCount Sets the pulse count of the pulse input card in slot S to zero (see note below for 1280 and 882D)
238' Method Signature:
8825 function ClearPulseCount (S : Integer) : SysCode;
1280 Parameters:
[in] S Slot number
SysCode values returned:
SysInvalidCounter The specified counter (S) is not a valid pulse input
SysOK The function completed successfully
PulseCount Sets C to the current pulse count of the pulse input card in slot S (see note below for 1280 and 882D)
ggg' Method Signature:
882II3 function PulseCount (S : Integer; VAR C : Integer) : SysCode;
1280 Parameters:
[in] S Slot number
[out] C Current pulse count
SysCode values returned:
SysInvalidCounter ~ The specified counter (S) is not a valid pulse input
SysOK The function completed successfully
Table 5-19. Pulse Input Operation Methods
|
80 Visit our website www.RiceLake.com RICE LAKE

WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods Description
PulseRate Sets R to the current pulse rate (in pulses per second) of the pulse input card in slot S (see note below for 1280 and 882D)
ggg' Method Signature:
882I|3 function PulseRate (S : Integer; VAR R : Integer) : SysCode;
Parameters:
[in] S Slot number
[out] C Current pulse rate

SysCode values returned:
SyslnvalidCounter
SysOK

The specified counter (S) is not a valid pulse input
The function completed successfully

Table 5-19. Pulse Input Operation Methods (Continued)

NOTES: When using pulse functions on the 1280 and 882D that do not support a Pulse Input card:
1280 - Pulse support is available on the 8 onboard Digital |0 when set to function “Pulseln”. Replace the Slot number

above with the Bit number.

882D - Two pulse input channels are supported by onboard hardware. Replace the Slot number above with the Pulse
Input number 1 or 2.

5.11 Display Operation

Methods Description
ClosePrompt Closes a prompt opened by the PromptUser, PromptNumeric or PromptPassword function
920! Method Signature:
820 rocedure ClosePrompt;
880 p u p 1
882D
1280
DisplayStatus Displays the string msg in the front panel status message area; The length of string msg should not exceed 32 characters
920i NOTE: On the 880 indicator, the message will scroll across the available six digit display.
820i Method Signature:
880 procedure DisplayStatus (msg : String);
882D Parameters:
1280 [in] msg Display text
GetEntry Retrieves the user entry from a programmed prompt.
920! Method Signature:
820 function GetEntry : String;
880 Y- ling
882D
1280
PromptUser Opens the alpha entry box and places the string msg in the user prompt area
920i Method Signature:
820 function PromptUser (msg : String) : SysCode;
880 Parameters:
882D [in] msg Prompt text
1280 SysCode values returned:
SysRequestFailed The prompt could not be opened
SysOK The function completed successfully
PromptPassword Brings up a password protected alpha user prompt
1280 Method Signature:
function PromptPassword (msg : String) : SysCode;
Parameters:
[in] msg Prompt text
SysCode values returned:
SysRequestFailed The prompt could not be opened
SysOK The function completed successfully
Table 5-20. Display Operation Methods
|
’V‘E!GCHE G"A!SE © Rice Lake Weighing Systems e All Rights Reserved 81

iRite Programmer Manual

Methods Description
PromptNumeric Brings up a numeric user prompt
1280 Method Signature:
function PromptNumeric (msg : String) : SysCode;
Parameters:
[in] msg Prompt text

SysCode values returned:

SysRequestFailed The prompt could not be opened

SysOK The function completed successfully
SelectScreen Selects the configured screen, N, to show on the indicator display
920i Method Signature:
1280 function SelectScreen (N : Integer) : SysCode;
Parameters:
[in] N Screen number
SysCode values returned:
SyslnvalidRequest The value specified for N is less than 1 or greater than 10 (920i) or 99 (1280)
SysOK The function completed successfully
SetEntry Sets the user entry for a programmed prompt; This procedure can be used to provide a default value for entry box text when
920i prompting the operator for input; Up to 1000 characters can be specified
820 NOTE: For the 1280, call SetEntry before opening the prompt with PromptUser.
880 Method Signature:
882D .
1280 procedure SetEntry (S : String);
UpdateEntry If using an external keyboard, this API is required to update data typed in on the keyboard; Works in conjunction with

PortCharReceived or equivalent handler

Method Signature:
procedure UpdateEntry (userinput : string);
Parameters:
[in] userlnput string value collected from external keyboard to update the data entry box in a prompt

Table 5-20. Display Operation Methods (Continued)

5.12 Display Programming

Methods Description
BusyShow Shows the busy circle icon on screen, dimming the rest of the screen and disabling all touch functionality
1280 Method Signature:
function BusyShow : SysCode;
SysCode values returned:
SysOK The function completed successfully
BusyHide Hides the busy circle icon on screen, restores the brightness and enables all touch functionality
1280

Method Signature:
function BusyHide : SysCode;
SysCode values returned:
SysOK The function completed successfully

CapturelmageFrom
VivotekIP7361
1280

Automatically appends a .jpg to the filename; Image is stored to the microSD card in the 1280 in the “sdimages” folder; This API
only works with the Vivotek IP7361 camera

Method Signature:
function CapturelmageFromVivoteklP7361 (source : String, filepath ; String) : SysCode
Parameters:

[in] source

[in] filepath
SysCode values returned:

SysOK

IP address in quotes (“192.168.10.2")
name of the file without an extension (“TruckPic”)

The function completed successfully

Table 5-21. Display Programming Methods

82 Visit our website www.RicelLake.com

RICE LAKE

WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods Description
ClearGraph Clears a graph by setting all elements of a Displaylmage array to zero
920 Method Signature:
procedure ClearGraph (VAR graph_array : Displaylmage) : SysCode;
Parameters:
[out] graph_array Graph identifier
DrawGraphic Displays or erases a graphic defined in the bitmap.iri file incorporated into the user program source (.src) file, see Section 6.6 on
920i page 121 for more information about display programming
Method Signature:
function DrawGraphic (gr_num : Integer; x_start : Integer; y_start : Integer; bitmap : Displaylmage; color : Color_type) : SysCode;
Parameters:
[in] gr_num Graphic number
[in] x_start X-axis starting pixel location
[in] y_start Y-axis starting pixel location
[in] bitmap Graphic bitmap
[in] color Color type
SysCode values returned:
SysDeviceError The value specified for gr_num is greater than 100
SysOK The function completed successfully
GraphCreate Assigns storage and defines the graph display type for use by other graphing functions
920 Method Signature:
function GraphCreate (graphic_no : Integer; bitmap : Displaylmage; color : Color_type; kind : GraphType) : SysCode;
Parameters:
[in] graphic_no Graphic number
[in] bitmap Bitmap
[in] color Graphic color
[in] kind Graphic kind
SysCode values returned:
SysinvalidRequest The Displaylmage specified by bitmap does not exist
SysOK The function completed successfully
Example:
G_Graph1 : Displaylmage;
result : Syscode;
begin
result := GraphCreate(1, G_Graph1, Black, Bar);
if result = SysOK then
result :=Graphinit(71,30,60,110,240);
end if;
end;
Table 5-21. Display Programming Methods (Continued)
|
’V‘E!GCHE (!-A'TSE © Rice Lake Weighing Systems e All Rights Reserved 83

iRite Programmer Manual

Methods Description
Graphlnit Sets the location of the graph on the display; x_start and y_start values specify the distance, in pixels, from top left corner of the
920i display at which the top left corner of the graph is shown; Height and width specify the graph size, in pixels (full display size is 240
pixels high by 320 pixels wide)
Method Signature:
function Graphinit (graphic_no : Integer; x_start : Integer; y_start : Integer; height : Integer; width : Integer) : SysCode;
Parameters:
[in] graphic_no Graphic number
[in] x_start X-axis starting pixel location
[in] y_start Y-axis starting pixel location
[in] height Graphic height
[in] width Graphic width
SysCode values returned:
SyslnvalidRequest ~ The Displaylmage specified by bitmap does not exist
SysOutOfRange Specified parameters exceed display height or width, or are too small to accommodate the graphic
SysDeviceError Internal error
SysOK The function completed successfully
Example:
G_Graph1 : Displaylmage;
result : Syscode;
begin
result := GraphCreate(1, G_Graph1, Black, Bar);
if result = SysOK then
result :=Graphlnit(71,30,60,110,240);
end if;
end;
GraphPlot Plots the graph previously set up using the GraphCreate, Graphlnit, and GraphScale functions; The graph appears as a
920i histogram: each GraphPlot call places a bar or line at the right edge of the graph, moving values from previous calls to the left;

The width of the bar, in pixels, is specified by width parameter; The maximum width value is 8; Larger values are reduced to 8;
If the y_value is beyond the bounds set by GraphScale, the bar is plotted to the maximum or minimum value

Method Signature:
function GraphPlot (graphic_no : Integer; y_value : Real; width : Integer; color : Color_type) : SysCode;
Parameters:

[in] graphic_no Graphic number

[in] y_value Pixel height of histogram
[in] color Color type

[in] width Pixel width of moving bar

SysCode values returned:
SyslnvalidRequest ~ Graph not initialized
SysOK The function completed successfully

Example:
result : Syscode;
weight : real;

begin

GetGross(1,Primary,weight);

result := GraphPlot(1, weight, 1, Black);
end;

Table 5-21. Display Programming Methods (Continued)

RICE LAKE

84 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods Description
GraphScale Sets the minimum and maximum x and y values for a graph; Currently, only the y values are used for the histogram displays;
920i x values are reserved for future use, but must be present in the call
Method Signature:
function GraphScale (graphic_no : Integer; x_min : Real; x_max : Real; y_min : Real; y_max : Real) : SysCode;
Parameters:
[in] graphic_no Graphic number
[in] X_min Minimum x-axis value
[in] X_max Maximum x-axis value)
[in] y_min Minimum y-axis value
[in] y_max Maximum y-axis value
SysCode values returned:
SysInvalidRequest ~ Graph not initialized
SysOutOfRange A min value (x_min or y_min) is greater than its specified max value
SysOK The function completed successfully
Example:
GraphScale(1, 10.0, 50000.0, 0.0, 10000.0);
SetBargraphLevel |Sets the displayed level of bar-graph widget W to the percentage (0-100%) specified by Level
fzzg(l) Method Signature:
function SetBargraphLevel (W : Integer; Level : Integer) : SysCode;
Parameters:
[in] W Bargraph widget number
[in] Level Bargraph widget level
SysCode values returned:
SyslInvalidWidget The bargraph widget specified by W does not exist
SysOK The function completed successfully
SetLabelText Sets the text of label widget Wto S
55205 Method Signature: .
1280 function SetLabelText (W : Integer; S : String) : SysCode;
Parameters:
[in] W Label widget number
[in] S Label widget text

SysCode values returned:
SyslInvalidWidget The label widget specified by W does not exist
SysOK The function completed successfully

NOTE: For the 882D only, this APl is used to display a string (S) in one of the three text lines on the display.
Specify 1, 2 or 3 for the widget (W). Only the first 20 characters of the string will be displayed.

SetNumericValue

Sets the value of numeric widget W to V

920i Method Signature:
function SetNumericValue (W : Integer; V : Real) : SysCode;
Parameters:
[in] w Numeric widget number
[in] Vv Numeric widget value
SysCode values returned:
SyslInvalidWidget The numeric widget specified by W does not exist
SysOK The function completed successfully
Table 5-21. Display Programming Methods (Continued)
|
RICE LAKE

© Rice Lake Weighing Systems e All Rights Reserved

85

iRite Programmer Manual

Methods Description
SetSymbolState Sets the state of symbol widget W to S; The widget state determines the variant of the widget symbol displayed; All widgets have
920i at least two states (values 1 and 2); Some have three (3), see thee 1280 Technical Manual (PN 167659) and the 920i Technical
1280 Manual (PN 67887) for descriptions of the symbol widget states
Method Signature:
function SetSymbolState (W : Integer; S : Integer) : SysCode;
Parameters:
[in] w Symbol widget number
[in] S Symbol widget state
SysCode values returned:
SyslInvalidWidget The symbol widget specified by W does not exist
SysOK The function completed successfully
SetWidget Sets the visibility state of widget W to V
Visibility Method Signature:
?22&') function SetWidgetVisibility (W : Integer; V : OnOffType) : SysCode;
Parameters:
[in] w Widget number
[in] V' Widget visibility
SysCode values returned:
SyslInvalidWidget The widget specified by W does not exist
SysOK The function completed successfully
SetWidgetColor Sets the color of widget W to C, a set widget color uses HTML RGB style (Section 5.12.1 on page 88)
1280 Method Signature:
function SetWidgetColor (W : Integer; C : String) : SysCode;
Parameters:
[in] w Widget number
[in] c Widget color
SysCode values returned:
SyslInvalidWidget Requested widget could not be found
SyslnvalidRequest ~ No string provided for color parameter
SysOk The function completed successfully
SetSymbolColor Sets the color of symbol widget W to C; Color integer range is 1-16 (Table 5-22 on page 88)
1280 Method Signature:
function SetSymbolColor (W : Integer; C : Integer) : SysCode;
Parameters:
[in] w Widget number
[in] c Symbol color, supports 16 colors (VGA)
SysCode values returned:
SyslInvalidWidget Requested widget could not be found
SyslnvalidRequest Invalid color
SysOk The function completed successfully
SetimageWidgetPath |Displays image widget as a BMP or PNG file; File is accessed from:
1280 A micro SD card, stored in a folder called sdimage

« An HTTP or HTTPS link.
There are also a set of stock images on the 1280 firmware that can be accessed using the command “local://” followed by the
desired file name; The file index can be found in the 1280 Technical Manual (PN 167659) in the Firmware Images section, see
Section 5.12.2 on page 89 for image widgets

Method Signature:
function SetimageWidgetPath (W : Integer; C : String) : SysCode;
Parameters:

[in] w Widget image

[in] C Image path

SysCode values returned:
SyslInvalidWidget Requested widget could not be found
SysOk The function completed successfully

Table 5-21. Display Programming Methods (Continued)

RICE LAKE

86 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods Description
SetMenuBarColor Sets the color of the menu bar
1280 Method Signature:
function SetMenuBarColor (C : String) : SysCode;
Parameters:
[in] c Color type, uses HTML RGB style
SysCode values returned:
SyslnvalidRequest Invalid type
SysOk The function completed successfully
SetBGColor Sets the background color
1280 Method Signature:
function SetBGColor (C : string; T : string) : SysCode;
Parameters:
[in] T Text color
[in] C Background color - name or HTML RGB Style
SysCode values returned:
SyslnvalidRequest Invalid type
SysOk The function completed successfully
SetScaleSymbols Sets the scale’s symbols
1280 Method Signature:
function SetScaleSymbols (C : String) : SysCode;
Parameters:
[in] C Color type (black and white only)
SysCode values returned:
SysinvalidRequest Invalid type
SysOk The function completed successfully
Table 5-21. Display Programming Methods (Continued)
|
RICE LAKE

© Rice Lake Weighing Systems e All Rights Reserved 87

iRite Programmer Manual

5.12.1 Setting Widget Colors

SetWidgetColor(1, “#RRGGBB");

Hexadecimal color values are supported in all browsers and is specified with: #fRRGGBB.
* RR =hex value for red 00-FF (0-255)
* GG = hex value for green 00-FF (0-255)
+ BB = hex value for blue 00-FF (0-255)

00-FF - specifies the intensity of the color.

Example: #0000FF is displayed as blue, because the blue component is set to its highest value (FF) and the
others are set to 00.

Value | Color
1 black
2 dark red
3 red
4 pink
5 teal
6 green
7 bright green
8 turquoise
9 dark blue
10 violet
1 blue
12 lightgrey
13 darkgrey
14 darkyellow
15 yellow
16 white

Table 5-22. Symbol Colors
The list of colors for the symbols are shown in Table 5-22.
The following link explains web colors and supplies more information about the use of web colors.

https://en.wikipedia.org/wiki/Web colors
This link accesses the vast number of hex colors that are supported by all browsers.

http://www.w3schools.com/colors/colors names.asp

]
88 Visit our website www.RicelLake.com RICE LAKE

WEIGHING SYSTEMS

https://www.ricelake.com
https://en.wikipedia.org/wiki/Web_colors
http://www.w3schools.com/colors/colors_names.asp

5.12.2 Image Widget Icons

NOTE: iRite does not have built-in functionality for iRite image numbers 1-7.png

API Reference

Image | Filename | Image | Filename Image Filename Image Filename Image Filename
1.png 15.png 29.png 43.png 57.png
RO, — ®- -
2.png 16.png 30.png 44.png 58.png
o —] =
3.png 17.png 31.png 45.png 59.png
@ = = _ -
4.png 18.png 32.png 46.png 60.png
® [|- | - —
5.png 19.png 33.png 47.png 61.png
o - B -
6.png 20.png 34.png 48.png 62.png
@ [—] -
. 7.png 21.png 35.png 49.png 63.png
UNITS @ | ——— —
8.png @ 22.png F 36.png 50.png 64.png
@ - @ " |—
9.png 23.png] i 37.png 51.png 65.png
O = S
::> 10.png @ 24.png 38.png — | 52.png 66.png
11.png - 25.png 39.png 53.png 67.png
12.png _‘ 26.png 40.png 54.png 68.png
Q D ——e [RaiBoss] T
13.png 27.png 41.png 55.png
Delete All %‘
14.png g 28.png 42.png —— 56.pNg
Table 5-23. Image Widgets
I
RICE LAKE

WEIGHING SYSTEMS

© Rice Lake Weighing Systems e All Rights Reserved

89

iRite Programmer Manual

5.12.3 Display Charting

Methods Description
ChartClear Clears the chart of data
1280 Method Signature:
function ChartClear(widget_no : Integer) : SysCode;
Parameters
[in] widget_no Chart widget number
SysCode values returned:
SysOK The function completed successfully
SyslInvalidWidget Requested widget could not be found
Chartlnit Call this API to initialize a non-static chart and set color values; Non-static charts allow:
1280 + Added points once rendered (ChartinserToExisting)
+ Animation (ChartSetAnimation)
+ Up to 200 data points
Method Signature:
Function Chartlnit (widget_no : Integer; fillColor : String; lineColor : String; pointColor : String; maxPoints : Integer) : SysCode;
Parameters:
[in] widget_no Chart widget number
[in] fillColor Html color for the fill area of the chart
[in] lineColor Html color for the line between points, or the outer edge of the bar
[in] pointColor Html color for data points on the line chart. Value is ignored on a bar chart
[in] maxPoints Max number of points on the chart; The value is capped at 200 points; If the number of
inserted points exceeds this value, the earliest points on the chart are removed
SysCode values returned:
SysOK The function completed successfully
ChartlnitStatic Initializes a static chart; All data points shown in a static chart must be added (ChartPlot) prior to rendering (ChartRender); Static
1280 charts do not add data points after rendering nor support animation; Support up to 8000 data points
Method Signature:
function ChartInitStatic (widget_no : Integer; fillColor : String; lineColor : String; pointColor : String; maxPoints : Integer) :
SysCode;
Parameters:
[in] widget_no Chart widget number
[in] fillColor Html color for the fill area of the chart
[in] lineColor Html color for the line between points, or the outer edge of the bar
[in] pointColor Html color for data points on the line chart; Value is ignored on a bar chart
[in] maxPoints Max number of points on the chart; The value is capped at 8000 points; If the number of
inserted points exceeds this value, the earliest points on the chart are removed
SysCode values returned:
SysOK The function completed successfully
ChartPlot This APl is called repeatedly until all data points are plotted prior to rendering the chart to the display
1280 Method Signature:
function ChartPlot (widget_no : Integer; label : String; value : real) : SysCode;
Parameters:
[in] widget_no Chart widget number
[in] label Label or name of the data point
[in] value Value of the data point
SysCode values returned:
SysOK The function completed successfully
ChartSetAnimation |If this is enabled, the chart will animate when rendered and updated (Non-static charts only)
1280 Method Signature:
function ChartSetAnimation (widget_no : Integer; enabled : BooleanType) : SysCode;
Parameters:
[in] widget_no Chart widget number
SysCode values returned:
SysOK The function completed successfully

Table 5-24. Display Charting Methods

RICE LAKE

90 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods Description
ChartRender Call this API to cause the chart to render to the display
1280 Method Signature:
function ChartRender (widget_no : Integer) : SysCode;
Parameters:
[in] widget_no Chart widget number
SysCode values returned:
SysOK The function completed successfully
ChartinsertTo Call this API to insert a new data point into a previously rendered non-static chart; If the new point exceeds the max number of
Existing points set in Chartlnit, the oldest or leftmost point on the chart is removed while the new point is added
1280 Method Signature:
function ChartinsertToExisting(widget_no : Integer; label : String; value : real) : SysCode;
Parameters:
[in] widget_no Chart widget number
[in] label Label or name of the data point
[in] value Value of the data point
SysCode values returned:
SysOK The function completed successfully
ChartSetPointSize | Sets the point size of the dots in the chart
1280 Method Signature:
Function ChartSetPointSize(widget_no : Integer; size : Integer) : Syscode;
Parameters
[in] widget_no Chart widget number
[in] size Point size of the dots in the chart
SysCode values returned:
SysOK The function completed successfully

SyslInvalidRequest
SyslInvalidWidget

Invalid point size
Requested widget could not be found

Table 5-24. Display Charting Methods (Continued)

5.13 Database Operation

Methods Description
<DB>.Add Adds a record to the referenced database; Previous sort operation may change
%%%' Method Signature:
882D function <DB>.Add : SysCode;
1280 SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found
SysDatabaseFull There is no space in the specified database for this record
SysOK The function completed successfully
<DB>.Clear Clears all records from the referenced database
%%%' Method Signature:
882D function <DB>.Clear : SysCode;
1280 SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found
SysOK The function completed successfully
<DB>.Delete Deletes the current record from the referenced database; Previous sort operation may change
%%%' Method Signature:
882D function <DB>.Delete : SysCode;
1280 SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysOK The function completed successfully
Table 5-25. Database Communication Methods
|
RICE LAKE

© Rice Lake Weighing Systems e All Rights Reserved 91

iRite Programmer Manual

Methods

Description

The following <DB.Find> functions allow a database to be searched; Column /is an alias for the field name, generated by the Generate iRev
import file operation; The value to be matched is set in the working database record, in the field corresponding to column I, before a call to
<DB>.FindFirst or <DB>.FindLast

<DB>.FindFirst Finds the first record in the referenced database that matches the contents of the Working Database Record column |
%%%' Method Signature:
882D function <DB>.FindFirst (I : Integer) : SysCode;
1280 SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysNoSuchColumn The column specified by | does not exist
SysOK The function completed successfully
<DB>.FindLast Finds the last record in the referenced database that matches the contents of the Working Database Record column |
%%%' Method Signature:
882D function <DB>.FindLast (I : Integer) : SysCode;
1280 SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysNoSuchColumn The column specified by | does not exist
SysOK The function completed successfully
<DB>.FindNext Finds the next record in the referenced database that matches the criteria of a previous FindFirst or FindLast operation
920i NOTE: GetNext only works with GetFirst. This only works for the 1280.
880 NOTE: FindNext only works with FindFirst. This does not work for the 920i.
81325238 Method Signature:
function <DB>.FindNext : SysCode;
SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysOK The function completed successfully
<DB>.FindPrev Finds the previous record in the referenced database that matches the criteria of a previous FindFirst or FindLast operation
%%%' Method Signatqre:
882D function <DB>.FindLast : SysCode;
1280 SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysOK The function completed successfully
<DB>.GetFirst Retrieves the first logical record from the referenced database
%%%' Methpd Signature:.
882D function <DB>.GetFirst : SysCode;
1280 SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysOK The function completed successfully
<DB>.GetLast Retrieves the last logical record from the referenced database
98%((); Methpd Signature:
882D function <DB>.GetLast : SysCode;
1280 SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysOK The function completed successfully
Table 5-25. Database Communication Methods (Continued)
|
92 Visit our website www.RiceLake.com RICE LAKE

WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods Description
<DB>.GetNext Retrieves the next logical record from the referenced database
920i NOTE: GetNext only works with GetFirst. This only works for the 1280.
880 NOTE: FindNext only works with FindFirst. This does not work for the 920i.
?ggg Method Signature:
function <DB>.GetNext : SysCode;
SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysOK The function completed successfully
<DB>.GetPrev Retrieves the previous logical record from the referenced database
98%(())' Methpd Signature:
882D function <DB>.GetPrev : SysCode;
1280 SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysOK The function completed successfully
<DB>.Sort Sorts database <DB> into ascending order based on the contents of column I; The sort table supports a maximum of 30 000
920i elements; Databases with more than 30 000 records cannot be sorted; The 880 has a maximum sort of 15000 elements
8%82% Method Signature:
1280 function <DB>.Sort (I : Integer) : SysCode;
Parameters:
[in] | Column number to sort by
SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysOK The function completed successfully
<DB>.Update Updates the current record in the referenced database with the contents of the Working Database Record; Using this function
920i invalidates any previous sort operation
S%BZOD Method Signature:
1280 function <DB>.Update : SysCode;
SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found
SysNoSuchRecord The requested record is not contained in the database
SysOK The function completed successfully
Table 5-25. Database Communication Methods (Continued)
|
RICE LAKE

© Rice Lake Weighing Systems e All Rights Reserved

93

iRite Programmer Manual

5.13.1 iRite SQL Feature
Version 1.05 of the 1280 indicator, includes an SQL query capability, added to the iRite language. This provides a robust query
mechanism for iRite programs. It includes the ability to:

+ specify multiple sort criteria

+ specify multiple search criteria

+ the ability to search for ranges rather than a single value

+ join tables to pull in data from multiple tables into a single result set
In order to maintain compatibility with the existing DB.* APIs and DB.DATA EDP commands, all tables must be defined with
DB.SCHEMA and DB.ALIAS configuration. The 1280 core software will be responsible for creating tables based on this
configuration. The following SQL capabilities will not be supported:

« CREATE TABLE

« DROP TABLE

« ALTER TABLE

DB Tables

Current design has one sqlite database for each configured schema. Each database has one table. This feature modifies that to
one iRite database. Each configured schema will be a table in the database. When updating an 1280 from Version 1.04 to
Version 1.05, a program to transfer data from existing databases into the new iRite database needs to be run.

DB iRite APIs
APIs have been created to allow the use of SQL queries from an iRite user program. Basic use is as follows:
+ Construct the SQL statement and call the DBExec; this API will return an identifier for the query result set

+ Retrieve data from the result set using the DBColumnxxx API; there will be APIs for the iRite types: Integer, Real, String,
and DateTime
+ Step through the result set with the DBNext API

+ After all results have been retrieved, call DBFinalize to free up the result set resources

RICE LAKE

94 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods Description
DBExec Execute a SQL statement; queries which return data have an active result set for which an identifier is returned; this identifier is
1280 used on subsequent calls to retrieve data from the result set; the result set resources must be freed by calling DBFinalize when it
is no longer needed; there is a limit of 10 concurrent active result sets
Method Signature:
function DBExec (S : String; var R : Integer) : SysCode;
Parameters:
fin] S SQL query
[out] R Result set identifier, 0 if there is no result set from the query
SysCode values returned:
SyslnvalidRequest ~ Too many active result sets
SysPermissionDenied An attempt was made to perform a restricted actions (create, alter or drop table)
SysRequestFailed SQL query could not be executed
SysOk The function completed successfully
DBNext Advance to the next row in the result set
1280 Method Signature:
function DBNext (R : Integer) : SysCode;
Parameters:
[in] R Result set identifier
SysCode values returned:
SyslnvalidRequest Invalid result set identifier
SysNoSuchRecord There are no more records in the result set
SysRequestFailed Advance could not be completed
SysOk The function completed successfully
DBColumnint Retrieve value of a column from the current row of the result set as an integer value
1280 Method Signature:
function DBColumnint (R : Integer; C : Integer; var V : Integer) : SysCode;
Parameters:
[in] R Result set identifier
[in] C Column number
[out] v Value of the requested column in the result set
SysCode values returned:
SyslnvalidRequest Invalid result set identifier
SysNoSuchColumn Invalid column number
SysRequestFailed Incorrect column type
SysOk The function completed successfully
DBColumnReal Retrieve value of a column from the current row of the result set as a real value
1280 Method Signature:
function DBColumnint (R : Integer; C : Integer; var V : Real) : SysCode;
Parameters:
[in] R Result set identifier
[in] C Column number
[out] V' Value of the requested column in the result set
SysCode values returned:
SysinvalidRequest Invalid result set identifier
SysNoSuchColumn Invalid column number
SysRequestFailed Incorrect column type
SysOk The function completed successfully
Table 5-26. iRite SQL Feature Methods
|
RICE LAKE

© Rice Lake Weighing Systems e All Rights Reserved

95

iRite Programmer Manual

Methods Description
DBColumnString Retrieve value of a column from the current row of the result set as a string value
1280 Method Signature:
function DBColumnint (R : Integer; C : Integer; var V : String) : SysCode;
Parameters:
[in] R Result set identifier
[in] C Column number
[out] V' Value of the requested column in the result set
SysCode values returned:
SysInvalidRequest Invalid result set identifier
SysNoSuchColumn Invalid column number
SysRequestFailed Incorrect column type
SysOk The function completed successfully
DBColumnDT Retrieve value of a column from the current row of the result set as a DateTime value
1280 Method Signature:
function DBColumnDT (R : Integer; C : Integer; var V : DateTime) : SysCode;
Parameters:
[in] R Result set identifier
[in] c Column number
[out] v Value of the requested column in the result set
SysCode values returned:
SysInvalidRequest Invalid result set identifier
SysNoSuchColumn Invalid column number
SysRequestFailed Incorrect column type
SysOk The function completed successfully
DBFinalize Free up result set resources. DBFinalize must be called when the result set is no longer needed; There is a limit to how many
1280 active result sets are allowed
Method Signature:
function DBFinalize (R : Integer) : SysCode;
Parameters:
[in] R Result set identifier
SysCode values returned:
SyslnvalidRequest Invalid result set identifier
SysOk The function completed successfully
DBErrMsg Get a description of the error from the last database call; If the most recent database call was successful the message returned is
1280 undefined
Method Signature:
function DBErMsg () : String;
DTToString Return String representation of the encoded date time d; This is intended to be used to add a DateTime value to an SQL query string
1280 Method Signature:
function DTToString (D : DateTime) : SysCode;
Parameters:
[in] D Date Time value to be formatted

Table 5-26. iRite SQL Feature Methods (Continued)

RICE LAKE

96 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

5.14 Timer Control

Thirty-two timers, configurable as either continuous or one-shot timers, can be used to generate events at some time in the
future. The shortest interval for which a timer can be set is 10 ms.

Methods Description
ResetTimer Resets the value of timer T (1-32) by stopping the timer, setting the timer mode to TimerOneShot, and setting the timer time-out to 0
ggg: Method Signature:
880 function ResetTimer (T : Integer) : Syscode;
882D Parameters:
1280 [in] T Timer number
SysCode values returned:
SyslInvalidTimer The timer specified by T is not a valid timer
SysOK The function completed successfully
ResumeTimer Restarts a stopped timer T (1-32) from its stopped value
ggg: Method Signature:
880 function ResumeTimer (T : Integer) : Syscode;
882D Parameters:
1280 [in] T Timer number
SysCode values returned:
SyslInvalidTimer The timer specified by T is not a valid timer
SysOK The function completed successfully
SetTimer Sets the time-out value of timer T (1-32); Timer values are specified in 0.01-second intervals (1= 10 ms, 100 = 1 second);
920i For one-shot timers, the SetTimer function must be called again to restart the timer once it has expired
88%%' Method Signature:
882D function SetTimer (T : Integer ; V : Integer) : Syscode;
1280 Parameters:
[in] T Timer number
[in] V' Timer value
SysCode values returned:
SysInvalidRequest The specified time-out value is less than 0
SyslnvalidTimer The timer specified by T is not a valid timer
SysOK The function completed successfully
SetTimerDigout Used to provide precise control of state changes for timers using TimerDigoutOff or TimerDigoutOn modes; The state of the
920i specified digital output (slot S, bit D) is changed when timer T (1-32) expires
%%%' Method Signature:
882D function SetTimerDigQOut (T : Integer ; S : Integer ; D: Integer) : Syscode;
1280 Parameters:
[in] T Timer number
[in] S Digital I/ slot number
[in] D Digital I/0 bit number
SysCode values returned:
SysInvalidRequest The slot or bit number specified is not a valid digital output
SyslInvalidTimer The timer specified by T a not valid timer
SysOK The function completed successfully
Example:
SetTimer(1,100); —Set value of Timer1 to 100 (1 second)
SetTimerMode(1, TimerDigoutOn); —Set timer mode to turn on the digital output
SetTimerDigout(1,0,1); —Set the digital output to control (slot 0, bit 1)
StartTimer(1); —Start timer
Table 5-27. Timer Control Methods
|
RICE LAKE

© Rice Lake Weighing Systems e All Rights Reserved 97

iRite Programmer Manual

Methods Description
SetTimerMode Sets the mode value, M, of timer T (1-32); This function, normally included in a program startup handler, only needs to be called
920i once for each timer unless the timer mode is changed
%%%' Method Signature:
882D function SetTimerMode (T : Integer ; M : TimerMode) : Syscode;
1280 Parameters:
[in] T Timer number
[in] M Timer mode
TimerMode values sent:
TimerOneShot Timer mode is set to one-shot
TimerContinuous Timer mode is set to continuous
TimerDigOutOff One-shot timer sets a digital output off when the timer expires
TimerDigOutOn One-shot timer sets a digital output on when the timer expires
SysCode values returned:
SyslInvalidTimer The timer specified by T is not a valid timer
SyslnvalidMode The timer mode specified by M is not a valid timer mode
SysOK The function completed successfully
StartTimer Starts timer T (1-32); For one-shot timers, this function must be called each time the timer is used; Continuous timers are started
920i only once; They do not require another call to StartTimer unless stopped by a call to the StopTimer function; If a timer has been
820i set with a time-out value of 0, StartTimer will not start the timer but will return SysOk
8%82% Method Signature:
1280 function StartTimer (T : Integer) : Syscode;
Parameters:
[in] T Timer number
SysCode values returned:
SyslInvalidTimer The timer specified by T is not a valid timer
SysOK The function completed successfully
StopTimer Stops timer T (1-32)
ggg: Method Signature:
880 function StopTimer (T : Integer) : Syscode;
882D Parameters:
1280 [in] T Timer number
SysCode values returned:
SyslInvalidTimer The timer specified by T is not a valid timer
SysOK The function completed successfully
Table 5-27. Timer Control Methods (Continued)
|
98 Visit our website www.RiceLake.com RICE LAKE

WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

5.15 Mathematical Operations

Methods Description
Abs Returns the absolute value of x
ggg: Method Signature:
880 function Abs (x : Real) : Real;
882D
1280
ATan Returns a value between —p/2 and p/2, representing the arctangent of x in radians
ggg: Method Signature:
880 function Atan (x : Real) : Real;
882D
1280
Ceil Returns the smallest integer greater than or equal to x
920! Method Signature:
820i : o : .
function Ceil (x : Real) : Integer;
880
882D
1280
Cos Returns the cosine of x. x must be specified in radians
ggg: Method Signature:
880 function Cos (x : Real) : Real;
882D
1280
Exp Returns the value of e*
920i .
820i Method Signature:
880 function Exp (x : Real) : Real;
882D
1280
Log Returns the value of logg (x)
920i .
820i Method Signature:
880 function Log (x : Real) : Real;
882D
1280
Log10 Returns the value of logq o(x)
ggg: Method Signature:
880 function Log10 (x : Real) : Real;
882D
1280
Sign Returns the sign of the numeric operand; If x < 0, the function returns a value of -1; Otherwise, the value returned is 1
ggg' Method Signature:
880I function Sign (x : Real) : Integer;
882D
1280
Sin Returns the sine of x. x must be specified in radians
920! Method Signature:
820 function Sin (x : Real) : Real;
880 : : '
882D
1280
Table 5-28. Mathematical Operation Methods
|
RICE LAKE

VS TEMS © Rice Lake Weighing Systems e All Rights Reserved

99

iRite Programmer Manual

Methods Description

Sqrt Returns the square root of x

ggg: Method Signature:

880 function Sqrt (x : Real) : Real;

882D

1280
Tan Returns the tangent of x. x must be specified in radians

ggg: Method Signature:

880 function Tan (x : Real) : Real;

882D

1280

Table 5-28. Mathematical Operation Methods (Continued)

5.16 Bit-Wise Operation

Methods Description

BitAnd Returns the bit-wise AND result of X and Y

ggg' Method Signature:

880I function BitAnd (X : Integer; Y : Integer) : Integer;

882D

1280
BitNot Returns the bit-wise NOT result of X

ggg' Method Signature:

880I function BitNOT (X : Integer) : Integer;

882D

1280
BitOr Returns the bit-wise OR result of Xand Y

?ég' Method Signature:

880| function BitOr (X : Integer; Y : Integer) : Integer;

882D

1280
BitXor Returns the bit-wise exclusive OR (XOR) result of X and Y

ggg' Method Signature:

880I function BitXor (X : Integer; Y : Integer) : Integer;

882D

1280

Table 5-29. Bit-Wise Operation Methods
|

100 Visit our website www.RiceLake.com ﬁ!&ﬁ G.'SAYSITSMES

https://www.ricelake.com

API Reference

5.17 String Operations

Methods Description
Asc Returns the ASCII value of the first character of string S; If S is an empty string, the value returned is 0
ggg' Method Signature:
880| function Asc (S : String) : Integer;
882D
1280
Chr$ Returns a one-character string containing the ASCII character represented by |
ggg' Method Signature:
880I function Chr$ (1 : Integer) : String;
882D Parameters:
1280 [in] | The integer value to be converted

Value returned:
A string containing the ASCII character of the integer value

Hex$ Returns an eight-character hexadecimal string equivalent to | (Range is -2147483647-2147483647)
ggg' Method Signature:
880I function Hex$ (1 : Integer) : String;
882D Parameters:
1280 [in] | The integer value to be converted

Value returned:
The string representation of the hexadecimal conversion of the integer value

LCase$ Returns the string S with all upper-case letters converted to lower case
238' Method Signature:
880I function LCase$ (S : String) : String;
882D Parameters:
1280 [in] S The string to be converted to all lower case

Value returned:
The converted string

Left$ Returns a string containing the leftmost | characters of string S; If I is greater than the length of S, the function returns a copy of S
ggg' Method Signature:
880I function Left$ (S : String; | : Integer) : String;
882D Parameters:
1280 [in] S The source string
[in] | The number of characters to return in the result

Value returned:
A string containing the requested number of leftmost characters of the provided string

Len Returns the length (number of characters) of string S
ggg' Method Signature:
880| function Len (S : String) : Integer;
882D Parameters:
1280 [in] S The string

Value returned:
An Integer representing the number of characters in the provided string

Table 5-30. String Operation Methods

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 101

iRite Programmer Manual

Methods Description
Mid$ Returns a number of characters (specified by length) from string s, beginning with the character specified by start; f start is
920i greater than the string length, the result is an empty string; If start + length is greater than the length of S, the returned value
820i contains the characters from start through the end of §
B%SZOD Method Signature:
1280 function Mid$ (S : String; start : Integer; length : Integer) : String;
Parameters:
[in] S The source string
[in] start Character position to start from
[in] length The number of characters to return in the result
Value returned:
A string containing the requested portion of the provided string
Oct$ Returns an 11-character octal string equivalent to | (range is -2147483647-2147483647)
238: Method Signature:
880 function Oct$ (I : Integer) : String;
882D Parameters:
1280 [in] | The integer value to be converted
Value returned:
The string representation of the octal conversion of the integer value
Right$ Returns a string containing the rightmost | characters of string S; If I is greater than the length of 8, the function returns a copy of 8
ggg: Methpd S.ignature: . .
880 function Right$ (S : String; | : Integer) : String;
882D Parameters:
1280 [in] S The source string.
[in] | The number of characters to return in the result.
Value returned:
A string containing the requested number of rightmost characters of the provided string
Space$ Returns a string containing N spaces
ggg: Method Signature:
880 function Space$ (N : Integer) : String;
882D Parameters:
1280 [in] N The number of spaces to be contained in the string
Value returned:
A string containing the requested number of spaces
UCase$ Returns the string S with all lower-case letters converted to upper case
ggg: Meth_od Signature: _ _
880 function UCase$ (S : String) : String;
882D Parameters:
1280 [in] S The string to be converted to all upper case

Value returned:
The converted string

Table 5-30. String Operation Methods (Continued)

102

RICE LAKE

Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

5.18 Data Conversion

Command Description
IntegerToString Returns a string representation of the integer I with a minimum length of W; If W is less than zero, zero is used as the minimum
920i length; If W is greater than 100, 100 is used as the minimum length
%%%' Method Signature:
882D function IntegerToString (I : Integer; W : Integer) : String;
1280 Parameters:
[in] | The integer value to be converted
[in] w The minimum length of the string
RealToString Returns a string representation of the real number R with a minimum length of W, with P digits to the right of the decimal point;
920i If W is less than zero, zero is used as the minimum length; If W is greater than 100, 100 is used as the minimum length;
820i If P is less than zero, zero is used as the precision; If P is greater than 20, 20 is used
8%%% Method Signature:
1280 function RealToString (R : Real; W : Integer; P: Integer) : String;
Parameters:
[in] R Real variable to convert to a string
[in] w The minimum length of the string
[in] P Precision or number of places to the right of the decimal place to display
StringTolnteger Returns the integer equivalent of the numeric string S; If S is not a valid string, function returns the value 0
238' Method Signature:
880I function StringTolnteger (S : String) : Integer;
882D Parameter:
1280 [in] S String to convert to an integer
StringToReal Returns the real number equivalent of the numeric string S; If S is not a valid string, the function returns the value 0.0
ggg' Method Signature:
880| function StringToReal (S : String) : Real;
882D Parameter:
1280 [in] S String to convert to a real value
SysCodeToString Returns a string representation of the SysCode type, see Section 4.0 on page 35 for all the possible types that can be returned
%%%' Method Signature:
882D function SysCodeToString(Code : SysCode): String;
1280 Parameter:
[in] Code A value of type SysCode to convert to a value of type String
Value Returned:
The String, see Section 4.0 on page 35 for possible values
Example:
result : Syscode;
result := SetFileTermination(FileCRLF);
WriteLn(1, SysCodeToString(result));
Table 5-31. Data Conversion Commands
I
RICE LAKE

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 103

iRite Programmer Manual

5.19 High Precision

Command Description
DecodeExtFloat A five-byte IEEE-1594 extended floating point number, expressed as an array or bytes, is converted to a standard 4-byte floating
920i point real; NaN and infinity are processed; If a number is too small to convert to 4-byte precision, zero is returned; If a number is
820 too large to convert to 4-byte precision, infinity is returned
1280 Method Signature:
function DecodeExtFloat(weight : ExtFloatArray) : real;
EncodeExtFloat Converts a 4-byte floating point real to a 5-byte IEEE-1394 extended floating point number in the form of an array of five bytes
ggg' Method Signature:
1 28(I) function EncodeExtFloat(weight : real) : ExtFloatArray;

5.20 FilellO

Table 5-32. High Precision Commands

A user program may have only one file open at a time. Once opened, any further file accesses will be to that file.

Methods Description
USBFileOpen Read a file from a flash drive; opening a file as Read positions the internal pointer at the start of the file; opening a file as Create or
920i Append positions the internal pointer at the end of the file; Any attempt to read a file opened as Create or Append will return
1280 SysEndOfFile
Method Signature:
function (filename : string; mode : FileAccessMode) : Syscode;
Parameters:
[in] filename The indicator will look in a folder named whatever the indicator's UID is set for (defaulted
to 1) for the filename sent as the parameter. Use the entire path (without the drive)
[in] mode How the file is to be opened: FileCreate, FileAppend, or FileRead. See FileAccessMode in
Section 4.0 on page 35
SysCode values returned:
SysOk
SysNoFileSystemFound
SysPortBusy
SysFileNotFound
SysDirectoryNotFound
SysFileExists
SyslInvalidFileFormat
SysBadFilename (over 8 characters)
SysEndOfFile
Examples:
USBFileOpen(Testing.txt, FileCreate); —Creates a new empty file called Testing.txt
USBFileOpen(Testing.txt,FileAppend); —Adds to a currently stored file called Testing.txt
USBFileOpen(test,FileRead); —Reads from a currently stored file
FileOpen Similar to USBFileOpen, except 1280 specific; Opens a file on the USB drive, SD card or FTP Server; Has an additional parameter
1280 to specify the device; Refer to the USBFileOpen description for additional information

Method Signature:
function FileOpen (filename : string; device : FileDevice; mode : FileAccessMode) : SysCode;
SysCode values returned:
SysOk
SysFileOpen
SysRequestFailed
Examples:
FileOpen(“Testing.txt”, SDCard, FileCreate); —Creates a new empty file called Testing.txt on the SD card
FileOpen(“Testing.txt",SDCard,FileAppend); —Adds to a currently stored file called Testing.txt on the SD card
FileOpen(“Testing.txt”,SDCard,FileRead); —Reads from a currently stored file on the SD card

Table 5-33. File I/0O Commands

104

Visit our website www.RicelLake.com

RICE LAKE

WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods

Description

USBFileClose
920i
1280

Used to close a currently opened file (USB) (see USBFileOpen); A file must be closed before device removal or the file contents may be
corrupted
Method Signature:
function USBFileClose : SysCode;
Parameters: None
SysCode values returned:
SysOk
SysNoFileSystemFound
SysMediaChanged
SysNoFileOpen

Example:
USBFileClose;

FileClose
1280

Similar to USBFileClose, except 1280 specific; Used to close a currently opened file, see FileOpen; a file must be closed before
device removal or the file contents may be corrupted; Refer to the USBFileClose description for additional information

Method Signature:
function FileClose : Syscode;
SysCode values returned:
SysOk
SysNoFileOpen
Example:
FileClose;

USBFileDelete
920i
1280

Deletes a file saved on the USB drive; To overwrite an existing file, the user program should first delete the file, then reopen it with
Create access

Method Signature:
function USBFileDelete (filename : string) : SysCode;
Parameters:
Filename -the indicator will look in a folder named whatever the indicator's UID is set for (defaulted to 1) for the filename sent
as the parameter
SysCode values returned:
SysOk
SysNoFileSystemFound
SysPortBusy
SysFileNotFound
SysDirectoryNotFound
SysBadfilename

Example:
USBFileDelete(“Testing. txt");

FileDelete
1280

Similar to USBFileDelete, except 1280 specific; Deletes a file saved on the USB drive, SD card or FTP server; To overwrite an
existing file, the user program should first delete the file, then reopen it with Create access; Has an additional parameter to
specify the device; Refer to the USBFileDelete description for additional information

Method Signature:
function FileDelete (filename : string; device : FileDevice) : Syscode;
SysCode values returned:

SysOk

SysFileOpen

SysFileNotFound

Example:

FileDelete(“Testing.txt”, FTP);
FileDelete(*Testing.txt’, USB);

Table 5-33. File I/0 Commands (Continued)

© Rice Lake Weighing Systems e All Rights Reserved 105

iRite Programmer Manual

Methods

Description

USBFileExists
920i
1280

Checks to see if a file exists on the USB drive

Method Signature:
function USBFileExists (filename : string) : SysCode;

Parameters:
Filename - the indicator will look in a folder named whatever the indicator's UID is set for (defaulted to 1) for the filename sent
as the parameter
SysCode values returned:
SysOk
SysNoFileSystemFound
SysPortBusy
SyslnvalidMode
SysBadfilename

Example:
USBFileExists(“Testing.txt");

FileExists
1280

Similar to USBFileExists, except 1280 specific; Checks to see if a file exists on the USB drive, SD card or FTP server; Has an
additional parameter to specify the device; Refer to the USBFileExists description for additional information

Method Signature:
function FileExists (filename : string; device : FileDevice) : SysCode;
SysCode values returned:

SysOk

SysFileOpen

SysFileNotFound

Example:

FileExists(“Testing.txt”, SDCard);
FileExists("Testing.txt’, FTP);

ReadLn
920i
1280

Read a string from whatever file is currently open; The string will be placed in a string-type-variable that must be defined

Method Signature:
function ReadLn (VAR data : string) : SysCode;

Parameters:
Data: this is the string type variable that the data will be placed in to display or print or otherwise be used by the program;
It reads one line at a time and the entire line is in this string
SysCode values returned:
SysOk
SysNoFileOpen
SysMediaChanged
SysNoFileSystemFound
SysEndOfFile

Example:
Result := ReadLn(sTempString); —Reads a line of data from whatever file is open
while Result <> SysEndOfFile —Loops, looking at the return code until the end
loop

Result := ReadLn(sTempString);

WriteLn(3, sTempString); —Prints each line read out Port 3
end loop;

WriteLn
920i

These APIs both write out a port (and are not new to USB but can be used by the USB); If writing to the USB drive it will append
the string to the end of the currently open file; The only difference between the two is the WriteLn sends a carriage return/line feed
at the end, and Write does not

Method Signature:
procedure Write (Port : Integer; data : string);
Parameters:
Port - Whichever port on the indicator the data will be sent out of. Port 2 is used for USB

Example:
see ReadLn.

Table 5-33. File I/0 Commands (Continued)

RICE LAKE

106 Visit our website www.RicelLake.com WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods

Description

FileWrite
1280

Appends a string to the currently open file

Method Signature:
function FileWrite (S : String) : SysCode;
Parameters:
S - The string to append to the file
SysCode values returned:
SysOk
SysNoFileOpen
SysNoFileSystemFound

Example:
FileWrite(“line of data”);

FileWriteLn
1280

Appends a string to the currently open file; Sends FileTermination (SetFileTermin) at the end

Method Signature:
function FileWriteLn (S : String) : SysCode;
Parameters:
S - The string to append to the file
SysCode values returned:
SysOk
SysNoFileOpen
SysNoFileSystemFound

Example:
FileWriteLn(“line of data”);

GetUSBStatus
920i

Returns the most recent status report for the USB port; This is useful for validating a Write or WriteLn
Method Signature:
function GetUSBStatus : SysCode;
SysCode values returned:
SysOk
SyslInvalidRequest

Example:
Result := GetUSBStatus;

GetUSBAssignment
920i

Returns the USBDeviceType currently in use

Method Signature:
function GetUSBAssignment : USBDeviceType;

Example:

dDevice := GetUSBAssignment; -verify the assignment

if dDevice = USBFileSystem then
WriteLn(3,"USBFlashDrive");

elsif dDevice = USBHostPC then
WriteLn(OutPort,"USBHostPC");

elsif dDevice = USBPrinter2 then
WriteLn(OutPort,"USBPrinter2");

elsif dDevice = USBPrinter1 then
WriteLn(OutPort,"USBPrinter1");

elsif dDevice = USBKeyboard then
WriteLn(OutPort,"USBKeyboard");

else
WriteLn(OutPort,"Device Unknown");

end if;

Table 5-33. File I/O Commands (Continued)

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved

107

iRite Programmer Manual

Methods Description
SetUSBAssignment |Selects a secondary device for current use, capturing the current device as primary
920 Method Signature:
function SetUSBAssignment (device : USBDeviceType) : SysCode
Parameters:
device (see Section 4.0 on page 35)
SysCode values returned:
SysOk
SysDeviceNotFound
SysPortBusy
Example:
SetUSBAssignment(USBHostPC);
ReleaseUSB Returns the current USB device to the captured primary device
Assignment Method Signature:
920i

function Release USBAssignment : SysCode
SysCode values returned:

SysOk

SysDeviceNotFound

SysPortBusy

Example:
ReleaseUSBAssignment;

IsUSBDevicePresent
920i

Checks to see if the device passed is there or not

Method Signature:

function IsUSBDevicePresent (device : USBDeviceType) : SysCode;
Parameters:

device (see Section 4.0 on page 35)

SysCode values returned:
SysOk
SysDeviceNotFound

Example:
Result := IsUSBDevicePresent(USBFileSystem);
if Result <> SysOk then

WriteLn(OutPort,"Flash Drive Not Found");
else

WriteLn(OutPort,"SysOK");
end if;

SetFileTermin
920i
1280

This determines what is appended at the end of each line
Termin - see Section 4.0 on page 35 for FileLineTermination type options

Method Signature:
function SetFileTermin (termin : FileLineTermination) : SysCode;
SysCode values returned:

SysOk

Example:
SetFileTermin(FileCRLF);

Table 5-33. File I/0 Commands (Continued)

108 Visit our website www.RicelLake.com

RICE LAKE

WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods

Description

DBLoad
920i

Opens a file in Read mode using the name of the database and the Unit ID and calls the core to process it as a database file;
The file is closed when done

Method Signature:
function DBLoad (db name : String) : SysCode;

SysCode values returned:
SysOk
SysNoSuchDatabase
SysNoFileSystemFound
SysFileAlreadyOpen
SysFileNotFound
SysDirectoryNotFound
SyslInvalidFileFormat
SysPortBusy

Example:
if DBLoad("Product") = Sysok then
DisplayStatus("Product Database Loaded into 920i")
end if;

DBSave
920i

Opens a file in Create mode using the name of the database and the Unit ID and calls the core to process it as a database file;
File is closed when done
Example: if the Unit ID in the 920i was 5, it would store a file to E:/5/Product.txt (if the computer recognized the thumb drive as
drive E).
Method Signature:
function DBSave (db name : String) SysCode;
SysCode values returned:

SysOk

SysNoSuchDatabase

SysNoFileSystemFound

SysFileAlreadyOpen

SysFileNotFound

SysDirectoryNotFound

SysFileExists

SysPortBusy
Example:

if DBSave("Product") = Sysok then

DisplayStatus("Product Database Saved to thumb drive")
end if;

Table 5-33. File I/0 Commands (Continued)

5.21 882D Belt Scale Data Acquisition

This section lists additional APls used specifically to program the 882D integrator.

NOTE: General APIs for the 882D are referenced elsewhere throughout this chapter (Section 5.0 on page 39).

Methods Description
GetMaxCapacity Sets C to the configured max capacity for scale S
882D Method Signature:
function GetMaxCapacity (S : Integer; VAR C : Real) : SysCode;
Parameters:
[in] S Scale number
[out] c Scale capacity
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist
SysOK The function completed successfully
Table 5-34. Scale Operation Methods
I
RICE LAKE

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 109

iRite Programmer Manual

Methods Description
GetTotal Sets V to the current value for totalizer T, scale S
882D Method Signature:
function GetTotal (S : Integer; T : Integer; V : Real) : SysCode;
Parameters:
[in] S Scale number
[in] T Totalizer number (O=master totalizer, 1=totalizer 1, 2=totalizer 2)
[out] v Current belt totalizer value
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist
SysInvalidTotalizer ~ The totalizer specified by T does not exist
SysOK The function completed successfully
ClearTotal Sets the value for totalizer T, scale S to zero
882D Method Signature:
function ResetBeltResetTotal (S : Integer; T : Integer) : SysCode;
Parameters:
[in] S Scale number
[in] T Totalizer number (1=totalizer 1, 2=totalizer 2)
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist
SysInvalidTotalizer ~ The totalizer specified by T does not exist or the master totalizer (0) was specified
SysOK The function completed successfully
GetLoad Sets V to the current belt load for scale S
882D Method Signature:
function GetLoad (S : Integer; V : Real) : SysCode;
Parameters:
[in] S Scale number
[out] V' Current belt load value
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist
SysOK The function completed successfully
GetSpeed Sets V to the current belt speed for scale S
882D Method Signature:
function GetSpeed (S : Integer; V : Real) : SysCode;
Parameters:
[in] S Scale number
[out] v Current belt speed
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist
SysOK The function completed successfully
GetRate Sets V to the current belt rate value for scale S
882D Method Signature:
function GetRate (S : Integer; V : Real) : SysCode;
Parameters:
[in] S Scale number
[out] v Current belt rate value
SysCode values returned:
SyslInvalidScale The scale specified by S does not exist
SysOK The function completed successfully
Table 5-34. Scale Operation Methods (Continued)
|
110 Visit our website www.RiceLake.com RICE LAKE

WEIGHING SYSTEMS

https://www.ricelake.com

API Reference

Methods Description
GetTotalizerUnits Sets V to the text string representing the configured totalizer resolution units for scale S
String Method Signature:

882D function GetTotalizerUnitsString (S : Integer; VARV : String) : SysCode;
Parameters:
[in] S Scale number
[out] v The configured totalizer resolution units string
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist
SysOK The function completed successfully
Example:
CurrentTotalizerUnitsString : string;
GetTotalizerUnitsString (1, CurrentTotalizerUnitsString);
GetLoadUnitsString |Sets V to the text string representing the configured load units for scale S
882D Method Signature:
function GetLoadUnitsString (S : Integer; VAR V : String) : SysCode;
Parameters:
[in] S Scale number
[out] v The configured load units string
SysCode values returned:
SyslnvalidScale The scale specified by S does not exist
SysOK The function completed successfully
Example:
CurrentLoadUnitsString : string;
GetLoadUnitsString (1, CurrentLoadUnitsString);
NOTE: Based on UNITS of METRIC (kg/m) or IMPERIAL (Ib/ft)
GetSpeedUnits Sets V to the text string representing the configured belt speed units for scale S
String Method Signature:
882D function GetSpeedUnitsString (S : Integer; VARV : String) : SysCode;
Parameters:
[in] S Scale number
[out] V' The configured belt speed units string
SysCode values returned:
SyslInvalidScale The scale specified by S does not exist
SysOK The function completed successfully
Example:
CurrentSpeedUnitsString : string;
GetSpeedUnitsString (1, CurrentSpeedUnitsString);
Table 5-34. Scale Operation Methods (Continued)
I
RICE LAKE

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved

1M

iRite Programmer Manual

Methods Description
GetRateUnitsString |Sets V to the text string representing the configured rate resolution units for scale S
882D

Method Signature:
function GetRateUnitsString (S : Integer; VAR V : String) : SysCode;

Parameters:

[in] S Scale number

[out] v The configured rate resolution units string
SysCode values returned:

SyslnvalidScale The scale specified by S does not exist

SysOK The function completed successfully
Example:

CurrentRateUnitsString : string;

GetRateUnitsString (1, CurrentRateUnitsString);

Table 5-34. Scale Operation Methods (Continued)

5.22 Alibi Records

Command Description
AlibiSend Write the requested alibi record to the requested port.
1280 Method Signature:
function AlibiSend(R : Integer, P : Integer) : SysCode;
Parameters:
[in] R Alibi record number
[in] P Port number
SysCode values returned:
SysNoSuchRecord Requested Alibi record does not exist
SyslnvalidPort The port number specified is not valid
SysOK The function completed successfully
Example:
AlibiSend(345, 1);
AlibiLookup Retrieve requested alibi record.
1280 NOTE: Each alibi record that ends with a “|” is saved.
Method Signature:
function AlibiLookup(R : Integer, VAR S : String) : SysCode;
Parameters:
[in] R Alibi record number
SysCode values returned:
SysNoSuchRecord Requested Alibi record does not exist
SyslnvalidPort Insufficient string space available
SysOK The function completed successfully
Example:
AlibiRecordString : string;
AlibiLookup(345, AlibiLookupString);
Table 5-35. Alibi Record Commands
|
112 Visit our website www.RiceLake.com RICE LAKE

WEIGHING SYSTEMS

https://www.ricelake.com

Appendix

6.0 Appendix

This section provides additional information about the iRite software.

6.1 Event Handlers

For even handler details, see the following information:

Handler

Description

AlertHandler

Runs when an error is generated from an attached iQUBE;
Use the EventString function to retrieve the error message displayed by the 920i

BusCommandHandler

Runs when new input data is received on the fieldbus; Getimage() or GetimageReal() must be called before the
BusCommandHandler() will be activated again; A new activation of the handler will occur when new input data is present
on the bus

ClearKeyPressed Runs when the CLR key on the numeric keypad is pressed
ClearKeyReleased Runs when the CLR key on the numeric keypad is released
CmdxHandler Runs when an F#x serial command is received on a serial port, where x is the F# command number, 1-32;
The communications port number receiving the command and the text associated with the F#x command can be returned
from the CmdxHandler using the EventPort and EventString functions (Table 5-9 on page 54)
ConnectionChar Runs when a character is received on connection TCPC1-TCPC3 or PORT1-PORT32. EventConnection function deter-
Received mines which connection the character was received on. Eventchar function returns a one character string representing the
character that caused the event.
This handler will be queued up for the following events:
+ Data received on one of the TCP ports - TCPC1, TCPC2, TCPC3
+ Data received on any of the serial ports - PORT1..PORT32 if there is no PortxCharReceived handler installed
+ The connection must be configured for Programmability
NOTE: This is not the configured Alias. This is the same name to be used in the WriteOut/WriteOutLn APIs.
DiginSxByActivate Runs when the digital input assigned to slot x, bit y is activated;
Valid bit assignments for slot 0 are 1-4 (for 88x) or 1-6 (for 820 and 1280);
Valid bit assignments for slots 1 through 14 are 1-24
DiginSxByDeactivate Runs when the digital input assigned to slot x, bit y is deactivated;
Valid bit assignments for slot 0 are 1-4 (for 88x) or 1-6 (for 820 and 1280);
Valid bit assignments for slots 1 through 14 are 1-24
DotKeyPressed Runs when the decimal point key on the numeric keypad is pressed
DotKeyReleased Runs when the decimal point key on the numeric keypad is released
EnterKeyPressed Runs when the ENTER key on the front panel is pressed
EnterKeyReleased Runs when the ENTER key on the front panel is released
EventHid For Rice Lake Weighing System use only
GrossNetKeyPressed Runs when the GROSS/NET key is pressed (Not available in the 882D)
GrossNetKeyReleased Runs when the GROSS/NET key is released (Not available in the 882D)
KeyPressed Runs when any front panel key is pressed;
Use the EventKey function within this handler to determine which key caused the event
KeyReleased Runs when any front panel key is released;
Use the EventKey function within this handler to determine which key caused the event
MajorKeyPressed Runs when any of the five preceding major keys is pressed;
Use the EventKey function within this handler to determine which key caused the event
MajorKeyReleased Runs when any of the five preceding major keys is released;
Use the EventKey function within this handler to determine which key caused the event
MenuKeypressed Runs when MENU key is pressed;
Use the EventKey function within this handler to determine which key caused the event (880 and 882D only)
MenuKeyreleased Runs when MENU key is released;
Use the EventKey function within this handler to determine which key caused the event (880 and 882D only)
ModeKeyPressed Runs when the MODE key is pressed (882D only)
ModeKeyReleased Runs when the MODE key is released (882D only)
Table 6-1. Event Handlers
I
RICE LAKE

© Rice Lake Weighing Systems e All Rights Reserved 113

iRite Programmer Manual

Handler Description

NavDownKeyPressed Runs when the DOWN navigation key is pressed

NavDownKeyReleased Runs when the DOWN navigation key is released

NavKeyPressed Runs when any of the navigation cluster keys (including ENTER) is pressed;
Use the EventKey function within this handler to determine which key caused the event

NavKeyReleased Runs when any of the navigation cluster keys (including ENTER) is released;
Use the EventKey function within this handler to determine which key caused the event

NavLeftKeyPressed Runs when the LEFT navigation key is pressed

NavLeftKeyReleased Runs when the LEFT navigation key is released

NavRightKeyPressed Runs when the RIGHT navigation key is pressed

NavRightKeyReleased Runs when the RIGHT navigation key is released

NavUpKeyPressed Runs when the UP navigation key is pressed

NavUpKeyReleased Runs when the UP navigation key is released

NumericKeyPressed Runs when any key on the numeric keypad (including CLR or decimal point) is pressed;
Use the EventKey function within this handler to determine which key caused the event

NumericKeyReleased Runs when any key on the numeric keypad (including CLR or decimal point) is released;
Use the EventKey function within this handler to determine which key caused the event (Not supported in the 880 or 920i)

NxKeyPressed Runs when a numeric key is pressed, where x=the key number 0-9

NxKeyReleased Runs when a numeric key is released, where x=the key number 0-9

PortxCharReceived Runs when a character is received on port x, where x is the port number, 1-32; Use the EventChar function within these
handlers to return a one-character string representing the character that caused the event. This handler will only fire if the
associated communications port is set to Programmability.

PrintFmtx Runs when a print format x (1-10) that includes the event raised (<EV>) token is printed

PrintKeyPressed Runs when the PRINT key is pressed

PrintkeyReleased Runs when the PRINT key is released

ProgramStartup Runs when the indicator is powered-up or when exiting setup mode

SetpointKeyPressed Runs when the SETPOINT key is pressed (882D only)

SetpointKeyReleased Runs when the SETPOINT key is released (882D only)

SoftKeyPressed Runs when any softkey is pressed; Use the EventKey function within this handler to determine which key caused the event

SoftKeyReleased Runs when any softkey is released; Use the EventKey function within this handler to determine which key caused the event

SoftxKeyPressed Runs when softkey x is pressed, where x=the softkey number, 1-5, left to right

SoftxKeyReleased Runs when softkey x is released, where x=the softkey number, 1-5, left to right

SPxTrip Runs when setpoint x is tripped, where x is the setpoint number, 1-maximum number of supported setpoints

SPxReset Reset trips when it achieves it setpoints and then drops below setpoint

TareKeyPressed Runs when the TARE key is pressed (Not available in the 882D)

TareKeyReleased Runs when the TARE key is released (Not available in the 882D)

TimerxTrip Runs when timer x is tripped, where x is the timer number, 1-32

UIReset Runs when a new browser connects or refreshes the screen; Use global variables to track prompt text, mode, and a flag to
know if a prompt is open then re-prompt if desired

UnitsKeyPressed Runs when the UNITS key is pressed (Not available in the 882D)

UnitsKeyReleased Runs when the UNITS key is released (Not available in the 882D)

UserxKeyPressed Runs when a user-defined softkey is pressed, where x is the user-defined key number, 1-10

UserxKeyReleased Runs when a user-defined softkey is released, where x is the user-defined key number, 1-10

UserEntry Runs when the ENTER key or Cancel softkey is pressed in response to a user prompt

WidgetClicked

Handler activated when any of the widgets are touched;
Works with EventWidget API which returns the number of the widget that was clicked (1280 only)

xKeyReleased This class of event handlers is activated when a key is released; The x is replaced with the name of the key;

Key names are the same as for the xKeyPressed handlers

NOTE: The xKeyReleased handlers are subject to the same timing considerations as all other user handlers.

The events are queued in the order they are detected. Any handler that involves lengthy operations may delay the

start of other handlers.
ZeroKeyPressed Runs when the ZERO key is pressed
ZeroKeyReleased Runs when the ZERO key is released

Table 6-1. Event Handlers (Continued)
I

114 Visit our website www.RiceLake.com RICE LAKE

WEIGHING SYSTEM!

https://www.ricelake.com

Appendix

6.2 Compiler Error Messages
For even handler details, see the following information:

Error Messages

Cause (Statement Type)

Argument is not a handler name

Enable/disable handler

Arguments must have intrinsic type

Write/Writeln

Array bound must be greater than zero

Type declaration

Array bound must be integer constant

Type declaration

Array is too large

Type declaration

Conditional expression must evaluate to a discrete data type

[f/while statement

Constant object cannot be stored Object declaration
Constant object must have initializer Object declaration
Exit outside all loops Exit statement

Expected array reference

Subscript reference

Expected object or function reference

Qualifying expression

Expression must be numeric

For statement

Expression type does not match declaration

Initializer

Function name overloads handler name

Function declaration uses name reserved for handler

Handlers may not be called

Procedure/function call

Identifier already declared in this scope

All declarations

lllegal comparison

Boolean expression

Index must be numeric

Subscript reference

Invalid qualifier

Qualifying expression

Loop index must be integer type For statement
Name is not a subprogram Procedure/function call
Name is not a valid handler name Handler declaration

Not a member of qualified type

Qualifying expression

Only a function can return a value

Procedure/handler declaration

Operand must be integer or enumeration type

Function or procedure call

Operand must be integer type

Logical expression

Operand type mismatch

Expression

Parameter is not a valid |-value

Procedure/function call

Parameter type mismatch

Procedure/function call

Parameters cannot be declared constant

Subprogram declaration

Port parameter must be integer type

Write/Writeln

Procedure name overloads handler name

Procedure declaration uses name reserved for handler

Procedure reference expected

Subprogram invocation

Record fields cannot be declared constant

Type declaration

Record fields cannot be declared stored

Type declaration

Reference is not a valid assignment target Assignment statement
Return is only allowed in a subprogram Startup body

Return type mismatch Return statement

Step value must be constant For statement
Subprogram invocation is missing parameters Procedure/function call
Syntax error Any statement

Cannot find system files

Internal error

Compiler error — Context stack error

Internal error

Too many names declared in this context Any declaration
Operand must be numeric Numeric operators
Subprogram reference expected Procedure/function call
Type mismatch in assignment Assignment statement
Type reference expected User-defined type name
Undefined identifier Identifier not declared

VAR parameter type must match exactly

Procedure/function call

Wrong number of array subscripts

Subscript reference

Wrong number of parameters

Procedure/function call

Table 6-2. iRite Compiler Error Messages

© Rice Lake Weighing Systems e All Rights Reserved 115

iRite Programmer Manual

6.3 Database Operations

The 1280, 820i, 880 and 882D use Revolution and the 920i uses iRev to edit, save, and restore databases. This section
describes procedures for maintaining databases.

6.3.1 Uploading
To upload a database from the indicator (for viewing, editing, or backup), do the following:
1. Make a serial connection between the PC and the indicator.
Start Revolution/iRev.
Connect to the indicator by clicking on the Connect button on the right side of the top toolbar.
Click the Database bar on the left side of the Revolution/iRev window.
Click the Data Editor icon.
Select the database to upload, then click the Upload button on top right of the toolbar.

A status message box will confirm that Revolution/iRev is Uploading Data. When complete, the message will change
to Upload Complete. Please export your data to a delimited file for backup. Press OK.

The contents of the indicator database can now be viewed, edited, or exported.

No ok b

NOTE: Changing the database in Revolution/iRev does not change the database stored in the indicator; the existing
indicator database must be cleared and replace it by downloading the edited database (Section 6.3.5 on page 117).

6.3.2 Exporting
For display, printing, or backup, save a database opened in Revolution/iRev to a text file by using the Export function.

1. With an open database uploaded to or created in Revolution/iRev, click Export on the top toolbar.
2. Adialog box is shown to select the separator (delimiter) to be used to separate the database fields.
Examples:
Tab-delimiting — Elliot Robert 1234 555-8686
Semi-colon delimiting — Elliot;Robert; 1234,555-8686

3. Once delimiter is selected, press Begin. A prompt appears to choose where to store the text file, save it in the same
folder as other program files.

When complete, a message box confirms Export Successful. The exported file can be used for viewing or printing the
database, or for later import to Revolution for download to the indicator.

116 Visit our website www.RicelLake.com

https://www.ricelake.com

6.3.3

Appendix

Importing

Import brings a previously exported text file into Revolution/iRev. The imported database can be downloaded to the indicator.

1.

2.
3.
4

o

6.3.4

Start the Revolution/iRev Data Editor and select the table you into which you want to import data.
Press Import on the top toolbar.
A dialog box appears to select the file to import. Double click on the file to import.

The Data Import Wizard box appears that displays the first couple of rows of data in your file. Notice that the field
names are shown as the first row. They should not be imported into the database since the field names are not part
of the data. Click the up arrow next to Start import at row: prompt to start at row 2 (the actual data).

Press Next and select the separator (delimiter) character used when the file is exported (the default is tab-delimited).

Press Next again, then Press Finish to import the file. All of the data should now be displayed in Revolution/iRev.
To downloaded the imported database to the indicator, follow the procedure described in Section 6.3.5.

Clearing

The Clear All button on the top of the toolbar in the Revolution/iRev Data Editor clears both the Revolution/iRev screen and the
entire indicator database. The existing indicator database must be cleared before downloading edited data, but this function
must be used with care to avoid losing data.

To clear a database:

1.

2 e

Upload the database from the indicator (Section 6.3.1 on page 116).

Edit the database and fields, if necessary.

Use the Export function described in Section 6.3.2 on page 116 to save a copy of the database.

Highlight all of the fields at once and copy them using either Ctrl-C or by choosing Edit-Copy from the toolbar.
Press the Clear All button to clear both the indicator database and the Revolution/iRev fields.

Upload the blank database from the indicator to ensure data integrity. The lock symbol on the Revolution/iRev screen
will open, allowing a new database to be downloaded.

To replace the cleared database with edited data, move the cursor to the upper left-hand box and paste the copied
data into the Revolution/iRev database. (Press Ctrl-V or choose Edit-Paste from the toolbar.)

Press the Download button to send fresh, edited data back down to the indicator (Section 6.3.5).

Downloading

NOTES: When downloading data to the indicator, it does not overwrite data that is there. Downloaded data is added to the
database regardless of whether it is the same data. If uploaded data is edited in Revolution/iRev and is to be used to
replace the indicator database, a Clear All must be done first, upload the cleared (blank) database, and then download the
edited data (Section 6.3.4)

Create or edit the data in the rows and columns to be entered in the database.
With the indicator connected, press the Download button at the top on the toolbar.

A status box shows the download progress (Downloading Row [number] of [total rows]). When complete, a
Download completed successfully message is shown. The database is now stored in the indicator.

RICE LAKE © Rice Lake Weighing Systems e All Rights Reserved 117

iRite Programmer Manual

6.4 Fieldbus User Program Interface
(Not used with the 880 and 882D)

The fieldbus data APIs (Section 5.7 on page 78), two type definitions (Buslmage, BusimageReal), and the EventPort function
are used to manage fieldbus data.

The function of BusCommandHandler is similar to other user-written event handlers. When present and enabled with the
EnableHandler(BusCommandHandler) call, the BusCommandHandler is activated every time a message is received on a
fieldbus. Keeping the BusCommandHandler execution short is important in order to not miss data transfers on the fieldbus.

The normal operation of BusCommandHandler is expected to include the following system calls in the following order:
* EventPort
+ Getlmage, or GetimageReal
+ Setlmage, or SetimageReal

With intervening code to perform the required user functions. The Setimage or SetimageReal call should be as close to the end
of the BusCommandHandler as possible.

The Buslmage type is the data type passed in Getimage and Setlmage (or, for real data, GetimageReal and SetimageReal).
Getlmage(fieldbus_no : integer; var data : Busimage) : SysCode
This call returns an array of data as received from the fieldbus. As only the data elements received on the fieldbus are changed

in a Getlmage call, the array should be initialized prior to the Getimage call. The fieldbus_no is the number returned by an
EventPort call from within the BusCommandHandler.

Setimage(fieldbus_no : integer; var data : Busimage) : SysCode
This call writes data to the fieldbus chip for access on the next cycle of the PLC. All data elements of the data array should be

properly set before calling Setimage. The fieldbus_no is the number returned by an EventPort call from within the
BusCommandHandler.

118 Visit our website www.Ricel ake.com WEIGHING SYSTEM ¢

https://www.ricelake.com

Example BusCommandHandler Code

-- Handler Name : BusCommandHandler
-- Created By : Rice Lake Weighing Systems
-- Last Modified on : 1/16/2003

-- Purpose : Example handler skeleton.

-- Side Effects :

handler BusCommandHandler;
--Declaration Section
busPort : integer;
data : Buslmage;
i : integer;
result : SysCode;
begin
-- Clear out the data array.
fori:=1to 32 loop
data[i] := 0;
end loop;

-- Find out which port (which bus card) started this event.

busPort := EventPort;

-- Then read the received data.
result := Getimage(busPort, data);

-- Test result as desired

-- Data interpretation and manipulation goes here.

-- Finally, put the changed data back.
result := Setimage(busPort, data);

-- Test result as desired

end;

Appendix

© Rice Lake Weighing Systems e All Rights Reserved

119

iRite Programmer Manual

6.5 Program to Retrieve Hardware Configuration

The HARDWARE serial command (see the indicator installation manual) returns a list of coded identifiers to describe which
option cards are installed in a system. The following program provides a similar function by deciphering the coded values
returned by the HARDWARE command and printing a list of installed option cards.

NOTE: This example is for a 920i. To prevent an Array Bounds error, the size of the array cannot exceed the number of
available slots for the indicator type (920i = 14, 820i and 882D = 2, 880 = 1, and 1280 = 6). In addition, supported

HW _array_type types vary depending on indicator type (Section 4.0 on page 35).

program Hardware;

my_array : HW_array_type;

handler User1KeyPressed,;

i : integer;
begin
Hardware(my_array);
fori:=1to 14
loop
if my_array[i] = NoCard then
WriteLn(2,"Slot ",i," No Card");
elsif my_array[i] = DualAtoD then
WriteLn(2,"Slot ",i," DualAtoD");
elsif my_array[i] = SingleAtoD then
WriteLn(2,"Slot ",i," SinglAtoD");
elsif my_array[i] = DualSerial then
WriteLn(2,"Slot ,i," DualSerial");
elsif my_array[i] = AnalogOut then
WriteLn(2,"Slot ",i," AnalogOut");
elsif my_array[i] = DigitallO then
WriteLn(2,"Slot ",i," DigitallO");
elsif my_array[i] = Pulse then
WriteLn(2,"Slot ",i," Pulse");
elsif my_array[i] = Memory then
WriteLn(2,"Slot ",i," Memory");
elsif my_array[i] = DeviceNet then
WriteLn(2,"Slot ",i," DeviceNet");
elsif my_array[i] = Profibus then
WriteLn(2,"Slot ",i," Profibus");
elsif my_array[i] = Ethernet then
WriteLn(2,"Slot ",i," Ethernet");
elsif my_array[i] = ABRIO then
WriteLn(2,"Slot ",i," ABRIO");
elsif my_array[i] = BCD then
WriteLn(2,"Slot ",i," BCD");
elsif my_array[i] = DSP2000 then
WriteLn(2,"Slot ",i," DSP2000");
elsif my_array[i] = Analoginput then
WriteLn(2,"Slot ",i," Analoginput");
elsif my_array[i] = ControINet then
WriteLn(2,"Slot ",i," ControINet");
elsif my_array[i] = DualAnalogOut then
WriteLn(2,"Slot ",i," DualAnalogOut");
end if;
end loop;
WriteLn(2,"");
end;
end Hardware;

120 Visit our website www.Ricel ake.com WEIGHING SYSTEM ¢

https://www.ricelake.com

Appendix

6.6 920i User Graphics

iRite user programs can be used to display graphics. The entire 920i display is writable; graphics can be of any size, up to the
full size of the 920i display, and up to 100 graphic images can be displayed. The actual number of graphics that can be loaded
depends on the size of the graphics and of the user program, both of which reside in the user program space.

Graphics used in iRite programs can be from any source but must be saved as monochrome bitmap (.bmp) files with write
access (file cannot be read-only). To enable the file for use in an iRite program, it is converted to a user program #include (.iri)
file using the bmp2iri.exe program (Figure 6-1).

DOS command window: run bmp2iri.exe bitmapped graphic

[prompt.bmp]

g_Prompt : DisplayImage;

Procedure initPrompt;
begin
g_Prompt [1]

g_Prompt [1]
g_Prompt [1]
------- bmp2iri.exe — g_Prompt [1]
g_Prompt [1]
g_Prompt [1]

g_Prompt [1]
g_Prompt [1]
g_Prompt [1]
g_Prompt [1]

16;

16;
132153342;
2147368956;
536350704;
2147385342;
1073483760;
2122218558;
1010572920;
132121536;

bitmap.iri file
Figure 6-1. Example of Converting Bitmapped Graphic (prompt.bmp) to an .iri File
Figure 6-1 shows the conversion process for a graphic file, prompt.bmp, to a user program #include, bitmap.iri. The
conversion is done by running the bmpz2iri.exe program in a DOS command window: note that the bmp2iri program assumes

the .bmp extension for the input graphic file (prompt.bmp). If additional files are converted using bmpZ2iri.exe, the output of the
program is appended to the bitmap.iri file.

To display the graphic, the bitmap.iri file must be incorporated into the user program by doing the following
+ In the iRite source (.src) file, immediately following the program declaration, add: #include bitmap.iri
* In the startup handler, call the array initialization routine for each graphic

+ To display or erase a graphic, or to clear all graphics, call the DrawGraphic API with the appropriate parameters
(Table 5-20 on page 81)

WEIGH NG SYSTEM & © Rice Lake Weighing Systems e All Rights Reserved 121

iRite Programmer Manual

122 Visit our website www.Ricel ake.com WEIGHING SYSTEM ¢

https://www.ricelake.com

WEIGHING SYSTEMS

© Rice Lake Weighing Systems Content subject to change without notice.
230 W. Coleman St. « Rice Lake, W1 54868 « USA USA: 800-472-6703 * International: +1-715-234-9171

January 22, 2026 www.ricelake.com PN 67888 Rev R

	Revision History
	1.0 Introduction
	1.1 Overview
	1.2 iRite Programs
	1.3 Sound Programming Practices

	2.0 Tutorial
	2.1 Program Example with Constants and Variables

	3.0 Language Syntax
	3.1 Lexical Elements
	3.1.1 Identifiers
	3.1.2 Keywords
	3.1.3 Constants
	3.1.4 Delimiters
	iFarenheit := ((9.0/5.0) * iCelcius) + 32; -- enforce proper precedence
	if (iVal >= 12) and (iVal <= 34) or (iMaxVal > 200) -- conditional expr.
	EnableSP(5); -- function parameters
	type CheckerBoard is array [8, 8] of recSquare;
	iThirdElement := aiValueArray[3];
	type Matrix is array [4,8] of integer;
	GetFilteredCount(iScale, iCounts);
	function GetAverageWeight(iScale : integer) : real;
	iIndex : integer;
	csCopyright : constant string := "2002 Rice Lake Weighing Systems";
	if sCommand = "download data" then
	Write(iPCPort, "Data download in progress. Please wait…");
	if iPointsScored = 6 then
	if iSpeed > 65 then
	if rGPA <= 3.0 then
	if sEntry <> "2" then
	rTolerance := 10.0 / 3.0
	…
	if rTolerance * 3 = 10 then
	-- do something
	end if;
	if (iSpeed > 55) and (not flgInterstate) or (strOfficer = "Cranky") then
	sDriverStatus := "Busted";
	rResult : 7 mod 3; -- rResult should equal 1
	rSlope : real;
	rSlope := 4/7;
	rSlope := 4.0/7;
	rSlope : real;
	iRise : integer := 4;
	iRun : integer := 7;
	rSlope := (iRise * 1.0) / iRun;
	3 := 1 + 1; -- not valid
	ciMaxAge := 67; -- where ciMaxAge was declared with keyword constant
	iInteger := "This is a string, not an integer!"; -- incompatible types

	3.2 Program Structure
	<program>:
	program IDENTIFIER ’;’
	<decl-section>
	<optional-main-body>
	end IDENTIFIER ’;’
	;
	<optional-main-body>:
	/* NULL */
	| begin <stmt-list>
	;
	program MyProgram;
	KeyCounter : Integer;
	handler AnyKeyPressed;
	begin
	KeyCounter := KeyCounter + 1;
	end;
	begin
	KeyCounter := 0
	end MyProgram;
	program Template; -- program name is always first!
	-- Put include (.iri) files here.
	#include template.iri
	-- Constants and aliases go here.
	g_csProgName : constant string := "Template Program";
	g_csVersion : constant string := "0.01";
	g_ciArraySize : integer := 100;
	-- User defined type definitions go here.
	type tShape is (Circle, Square, Triangle, Rectangle, Octagon, Pentagon, Dodecahedron);
	type tColor is (Blue, Red, Green, Yellow, Purple);
	type tDescription is
	record
	eColor : tColor;
	eShape : tShape;
	end record;
	type tBigArray is array [g_ciArraySize] of tDescription;
	-- Variable declarations go here.
	g_iBuild : integer;
	g_srcResult : SysCode;
	g_aArray : tBigArray;
	g_rSingleRecord : tDescription;
	-- Start functions and procedures definitions here.
	function MakeVersionString : string;
	sTemp : string;
	begin
	if g_iBuild > 9 then
	sTemp := ("Ver " + g_csVersion + "." + IntegerToString(g_iBuild, 2));
	else
	sTemp := ("Ver " + g_csVersion + ".0" + IntegerToString(g_iBuild, 1));
	end if;
	return sTemp;
	end;
	procedure DisplayVersion;
	begin
	DisplayStatus(g_csProgName + " " + MakeVersionString);
	end;
	-- Begin event handler definitions here.
	handler User1KeyPressed;
	begin
	DisplayVersion;
	end;
	-- This chunk of code is the system startup event handler.
	begin
	-- Initialize all global variables here.
	-- Increment the build number every time you make a change to a new version.
	g_iBuild := 3;
	-- Display the version number to the display.
	DisplayVersion;
	end Template;

	3.3 Declarations
	3.3.1 Type Declarations
	<type-declaration>:
	type IDENTIFIER is <type-definition> ';'
	;
	<type-definition>:
	<record-type-definition>
	| <array-type-definition>
	| <database-type-definition>
	| <enum-type-definition>
	;
	<enum-type-definition>:
	'(' <identifier-list> ')'
	;
	<identifier-list>:
	IDENTIFIER
	| <identifier-list> ',' IDENTIFIER
	;
	type StopLightColors is (Green, Yellow, Red);
	type BatchStates is (NotStarted, OpenFeedGate, CloseGate, WaitforSS, PrintTicket, AllDone);
	<record-type-definition>:
	record
	<field-declaration-list>
	end record
	;
	<field-declaration-list>:
	<field-declaration>
	| <field declaration-list>
	<field declaration>
	;
	<field-declaration>:
	IDENTIFIER ':' <type> ';'
	;
	type MyRecord is
	record
	A : integer;
	B : real;
	end record;
	type tDepartment is (Shipping, Sales, Engineering, Management);
	type tEmptype is (Hourly, Salaried);
	type EmployeeRecord is
	record
	ID : integer;
	Last : string;
	First : string;
	Dept : tDepartment;
	EmployeeType : tEmptype;
	end record;
	<database-type-definition>:
	database (STRING_CONSTANT)
	<field-declaration-list>
	end database
	;
	<field-declaration-list>:
	<field-declaration>
	| <field declaration-list>
	<field declaration>
	;
	<field-declaration>:
	IDENTIFIER ':' <type> ';'
	;
	type MyDB is
	database ("DBALIAS")
	A : integer
	B : real
	end database;
	;
	<array-type-definition>:
	array '[' <expr-list> ']' of <type>
	;
	type Weights is array [25] of Real;
	An array consisting of user-defined records could be defined as follows:
	type Employees is array [100] of EmployeeRecord;
	type MyArray is array [10,10] of Integer;

	3.3.2 Variable Declarations
	<variable-declaration>:
	IDENTIFIER ':' <stored-option> <constant-option> <type>
	<optional-initial-value>
	;
	<stored-option>:
	/* NULL */
	| stored
	;
	<constant-option>:
	/* NULL */
	| constant
	;
	<optional-initial-value>:
	/* NULL */
	| := <expr>
	;
	MyVariable : StopLightColor; -- Declare MyVariable
	MyCount : stored Integer; --Declare a stored variable of type Integer

	3.3.3 Subprogram Declarations
	<handler-declaration>:
	handler IDENTIFIER ';'
	<decl-section>
	begin
	<stmt-list>
	end ';'
	;
	handler SP1Trip;
	I : Integer;
	begin
	for I := 1 to 10
	loop
	Writeln (1, "Setpoint Tripped!");
	if I=2 then
	return;
	endif;
	end loop;
	end;
	<procedure-declaration>:
	procedure IDENTIFIER
	<optional-formal-args> ';'
	<decl-section>
	begin
	<stmt-list>
	end ';'
	;
	<optional-formal-args>:
	/* NULL */
	| <formal-args>
	;
	<formal-args>:
	'(' <arg-list> ')'
	;
	<arg-list>:
	<optional-var-spec>
	<variable-declaration>
	| <arg-list> ';' <optional-var-spec>
	<variable-declaration>
	;
	<optional-var-spec>:
	/* NULL */
	| var
	;
	procedure PrintString (S : String);
	begin
	Writeln (1, "The String is => ",S);
	end;
	procedure ShowVersion;
	begin
	DisplayStatus ("Version 1.42");
	end;
	procedure Inc (var iVariable : Integer);
	begin
	iVariable := iVariable + 1;
	end;
	<function-declaration>:
	function IDENTIFIER
	<optional-formal-args> ':' <type> ';'
	<decl-section>
	begin
	<stmt-list>
	end ';'
	;
	function Sum (A : integer; B : integer) : Integer;
	begin
	return A + B;
	end;
	function PoundsPerGallon : Real;
	begin
	return 8.34;
	end;

	3.4 Statements
	<stmt>:
	<assign-stmt>
	| <call-stmt>
	| <if-stmt>
	| <return-stmt>
	| <loop-stmt>
	| exit-stmt>
	;
	3.4.1 Assignment Statement
	iMaxPieces := 12000;
	rRotations := 25.3456;
	sPlaceChickenPrompt := "Please place the chicken on the scale…";
	iRevision : integer := 1;
	rPricePerPound : real := 4.99;
	csProgramName : constant string := "Pig and Chicken Weigher";
	for iCounter := 1 to 25
	for iTries := ciFirstTry to ciMaxTries
	sysReturn := GetSPTime(4, dtDateTime);
	rCosine := Cos(1.234);
	iTotalLivestock := iNumChickens + iNumPigs + GetNumCows;
	rTotalCost := ((iNumBolt * rBoltPrice) + (iNumNuts * rNutPrice)) * (1 + rTaxRate);
	sOutputText := The total cost is : " + RealToString(rTotalCost, 4, 2) + " dollars.";
	iValue := 34.867; -- Loss of significant digits! iValue will equal 34, no rounding!
	rDegrees := 212; -- No problem! rDegrees will equal 212.000000000000000000

	3.4.2 Call Statement
	<call-stmt>:
	<name> ';'
	;
	program GlobalAsVar;
	g_ciPrinterPort : constant integer := 2;
	g_sString : string := "Initialized, not changed yet";
	procedure PrintGlobalString;
	begin
	WriteLn(g_ciPrinterPort, g_sString);
	end;
	procedure SetGlobalString (var vsStringCopy : string);
	begin
	vsStringCopy := "String has been changed";
	Write(g_ciPrinterPort, "In function call: ");
	PrintGlobalString;
	end;
	begin
	Write(g_ciPrinterPort, "Before function call: ");
	PrintGlobalString;
	SetGlobalString(g_sString);
	Write(g_ciPrinterPort, "After function call: ");
	PrintGlobalString;
	end GlobalAsVar;
	Before function call: Initialized, not changed yet
	In function call: Initialized, not changed yet
	After function call: String has been changed

	3.4.3 If Statement
	if <expression> then
	<statement list>
	end if;
	if iStrikes = 3 then
	sResponse := "You’re out!";
	end if;
	if <expression> then
	<statement list 1>
	else
	<statement list 2>
	end if;
	if iAge => 18 then
	sStatus := "Adult";
	else
	sStatus := "Minor";
	end if;
	if <expression> then
	<statement list 1>
	elsif <expression> then
	<statement list 2>
	elsif <expression> then
	<statement list 3>
	elsif <expression> then
	<statement list 4>
	else
	<statement list 5>
	end if;
	if rWeight <= 2.0 then
	iGrade := 1;
	elsif (rWeight > 2.0) and (rWeight < 4.5) then
	iGrade := 2;
	elsif (rWeight > 4.5) and (rWeight < 9.25) then
	iGrade := 3;
	elsif (rWeight > 9.25) and (rWeight < 11.875) then
	iGrade := 4;
	else
	iGrade := 0;
	sErrorString := "Invalid Weight!";
	end if;

	3.4.4 Loop Statement
	loop
	<statement list>
	end loop;
	rGrossWeight : real;
	loop
	WriteLn(2, "I’m in a loop.");
	GetGross(1, Primary, rGrossWeight);
	if rGrossWeight > 200 then
	exit;
	end if;
	end loop;
	while <expression>
	loop
	<statement list>
	end loop;
	rGrossWeight : real;
	GetGross(1, Primary, rGrossWeight);
	while rGrossWeight <= 200
	loop
	WriteLn(2, "I’m in a loop.");
	GetGross(1, Primary, rGrossWeight);
	end loop;
	for <name> := <expression> to <expression> step <expression>
	loop
	<statement list>
	end loop;
	for iCount := 97 to 122
	loop
	strAlpha := strAlpha + chr$(iCount);
	end loop;
	for iCount := 10 to 0 step -1
	loop
	if iCount = 0 then
	strMissionControl := "Blast off!";
	else
	strMissionControl := IntegerToString(iCount, 2);
	end if;
	end loop;

	3.4.5 Return Statement
	procedure DontDoMuch;
	begin
	if PromptUser("circle: ") <> SysOK then
	return;
	end if;
	end;
	function Inc(var viNumber : integer) : integer;
	begin
	viNumber := viNumber + 1;
	return viNumber;
	end;

	3.4.6 Exit Statement

	4.0 Built-in Types
	4.1 Using SysCode Data
	Procedure GetTareWeight
	SysResult : SysCode;
	TareWeight : Real;
	begin
	SysResult:= GetTare(1, Primary, TareWeight);
	If SysResult = SysOk then
	WriteLn(1, “The current tare weight is “ + realtostring(TareWeight,0,4));
	end if;
	end;

	5.0 API Reference
	5.1 Scale Data Acquisition
	5.1.1 Weight Acquisition
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[out] C Scale capacity
	SysInvalidScale The scale specified by S does not exist
	SysInvalidUnits The units value U is not valid
	SysOK The function completed successfully
	Capacity : Real;
	…
	GetCapacity (1, Primary, Capacity);
	function GetFilteredCount (S : Integer; VAR C : Integer) : SysCode;
	[in] S Scale number
	[out] C Current filtered A/D count
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S is not an A/D-based scale
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	FilterCount : Integer;
	…
	GetFilteredCount (1, FilterCount);
	function GetGross (S : Integer; U : Units; VAR W : Real) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[out] W Gross weight
	SysInvalidScale The scale specified by S does not exist
	SysInvalidUnits The units specified by U is not valid
	SysInvalidRequest The requested value is not available
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	GrossWeight : Real;
	…
	GetGross (1, Primary, GrossWeight);
	WriteLn (1, "Current gross weight is " + RealToString(GrossWeight,0,1));
	function GetNet (S : Integer; U : Units; VAR W : Real) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[out] W Net weight
	SysInvalidScale The scale specified by S does not exist
	SysInvalidUnits The units specified by U is not valid
	SysInvalidRequest The requested value is not available
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	NetWeight : Real;
	…
	GetNet (Scale1, Secondary, NetWeight);
	WriteLn (1, "Current net weight is " + RealToString(NetWeight,0,1));
	function GetRawCount (S : Integer; VAR C : Integer) : SysCode;
	[in] S Scale number
	[out] C Current raw A/D count
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S is not an A/D-based scale
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	RawCount : Integer;
	…
	GetRawCount (1, RawCount);
	function GetMV (S : Integer; VAR MV : Real) : SysCode;
	[in] S Scale number
	[out] R Millivolts
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The requested value is not available
	SysOK The function completed successfully

	Millivolt : Real;
	…
	GetMV (1, Millivolt);
	WriteIn (1, “Current Millivolt reading is” + realtostring(Millivolt,0,2));

	function GetTare (S : Integer; U : Units; VAR W : Real) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[out] W Tare weight
	SysInvalidScale The scale specified by S does not exist
	SysInvalidUnits The units specified by U is not valid
	SysInvalidRequest The requested value is not available
	SysNoTare The specified scale has no tare; W is set to 0.0
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	TareWeight : Real;
	…
	GetTare (1, Tertiary, TareWeight);
	WriteLn (1, "Current tare weight is " + RealToString(TareWeight,0,1));

	5.1.2 Weight Data Recording
	Procedure CloseDataRecording (scale_no : Integer);
	[in] scale_no Scale Number

	Function GetDataRecordSize(scale_no : Integer) : Integer;
	[in] scale_no Scale Number
	[out] number The number of data points recorded

	Function InitDataRecording (data : DataArray; scale_no : Integer; start_sp : Integer; stop_sp : Integer) : SysCode;
	[in] data Data array name
	[in] scale_no Scale Number
	[in] start_sp Start setpoint number
	[in] stop_sp Stop setpoint number
	SysRequestFailed The function did not complete
	SysOk The function completed successfully

	Function SetDataRecordPrecision (scale_no : Integer; precision : OnOffType) : SysCode;
	[in] scale_no Scale Number
	[in] precision OnOffType Von or VOff
	SysRequestFailed The function did not complete
	SysOk The function completed successfully

	Function StartWeightCollection (scale_no : Integer; data : WeightCollectionArray) : SysCode;
	[in] scale_no Scale Number
	[in] data Data array name
	SysRequestFailed The function did not complete
	SysOk The function completed successfully

	Function StopWeightCollection(scale_no : Integer) : Integer;
	[in] scale_no Scale Number
	[out] number The number of data points recorded

	5.1.3 Tare Manipulation
	function AcquireTare (S : Integer) : SysCode;
	[in] S Scale number
	SysInvalidRequest The specified scale is Legal for Trade Serial Scale. No tare is acquired
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysLFTViolation The tare operation would violate configured legal-for-trade restrictions for the specified scale; no tare is acquired
	SysOutOfRange The tare operation would acquire a tare that may cause a display overload. No tare is acquired.
	SysPermissionDenied The tare operation would violate configured tare acquisition restrictions for the specified scale; no tare is acquired
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	AcquireTare (1);
	function ClearTare (S : Integer) : SysCode;
	[in] S Scale number
	SysInvalidRequest The specified scale is Legal for Trade Serial Scale; no tare is acquired
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysNoTare The scale specified by S has no tare
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	ClearTare (1);
	function GetTareType (S : Integer; VAR T : TareType) : SysCode;
	[in] S Scale number
	[out] T Tare type
	NoTare There is no tare value associated with the specified scale
	PushbuttonTare The current tare was acquired by pushbutton
	KeyedTare The current tare was acquired by key entry or by setting the tare
	SysDeviceError The scale is reporting an error condition; T is still set to the tare type
	SysInvalidScale The scale specified by S does not exist or is a program scale; T is unchanged
	SysOK The function completed successfully

	TT : TareType;
	…
	GetTareType (1, TT);
	if TT=KeyedTare then …
	function SetTare (S : Integer; U : Units; W : Real) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[in] W Tare weight
	SysInvalidRequest The specified scale is Legal for Trade Serial Scale; no tare is acquired
	SysPermissionDenied The tare operation would violate configured tare acquisition restrictions for the specified scale; no tare is acquired
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysInvalidUnits The units specified by U is not valid
	SysLFTViolation The tare operation would violate configured legal-for-trade restrictions for the specified scale; no tare is acquired
	SysOutOfRange The tare operation would acquire a tare that may cause a display overload; no tare is acquired
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	DesiredTare : Real;
	…
	DesiredTare := 1234.5;
	SetTare (1, Primary, DesiredTare);
	function SetTare (S : Integer; U : Units; W : Real) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[in] W Tare weight
	SysInvalidRequest The specified scale is Legal for Trade Serial Scale; no tare is acquired
	SysPermissionDenied The tare operation would violate configured tare acquisition restrictions for the specified scale; no tare is acquired
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysInvalidUnits The units specified by U is not valid
	SysLFTViolation The tare operation would violate configured legal-for-trade restrictions for the specified scale; no tare is acquired
	SysOutOfRange The tare operation would acquire a tare that may cause a display overload; no tare is acquired
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	DesiredTare : Real;
	…
	DesiredTare := 1234.5;
	SetTare (1, Primary, DesiredTare);

	5.1.4 Rate of Change
	function GetROC (S : Integer; VAR R : Real) : SysCode;
	[in] S Scale number
	[out] R Rate of change value
	SysInvalidRequest The scale specified by S is not an A/D scale, an industrial serial scale, or Rate of Change is not supported
	SysInvalidScale The scale specified by S does not exist
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	ROC : Real;
	…
	GetROC (1, ROC);
	WriteLn (1, "Current ROC is " + RealToString(ROC,0,1));

	5.1.5 Accumulator Operations
	function ClearAccum (S : Integer) : SysCode;
	[in] S Scale number
	SysInvalidScale The scale specified by S does not exist
	SysPermissionDenied The accumulator is not enabled for the specified scale
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	ClearAccum (1);
	function GetAccum (S : Integer; U : Units; VAR W : Real) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[out] W Accumulated weight
	SysInvalidScale The scale specified by S does not exist
	SysInvalidUnits The units specified by U is not valid
	SysDeviceError The scale is reporting an error condition; D is still updated with the date of the most recent accumulation
	SysPermissionDenied The accumulator is not enabled for the specified scale
	SysOK The function completed successfully

	AccumValue : Real;
	…
	GetAccum (1, Primary, AccumValue);
	function GetAccumCount (S : Integer; VAR N : Integer) : SysCode;
	[in] S Scale number
	[out] N Accumulator count
	SysInvalidScale The scale specified by S does not exist
	SysPermissionDenied The accumulator is not enabled for the specified scale
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	NumAccums : Integer;
	…
	GetAccumCount (1, NumAccums);
	function GetAccumDate (S : Integer; VAR D : String) : SysCode;
	[in] S Scale number
	[out] D Accumulator date
	SysInvalidScale The scale specified by S does not exist
	SysPermissionDenied The accumulator is not enabled for the specified scale
	SysDeviceError The scale is reporting an error condition; D is still updated with the date of the most recent accumulation
	SysOK The function completed successfully

	AccumDate : String;
	…
	GetAccumDate (1, AccumDate);
	function GetAccumTime (S : Integer; VAR T : String) : SysCode;
	[in] S Scale number
	[out] T Accumulator time
	SysInvalidScale The scale specified by S does not exist
	SysPermissionDenied The accumulator is not enabled for the specified scale
	SysDeviceError The scale is reporting an error condition. T is still updated with the time of the most recent accumulation
	SysOK The function completed successfully

	AccumTime : String;
	…
	GetAccumTime (1, AccumTime);
	function GetAvgAccum (S : Integer; U : Units; VAR W : Real) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[out] W Average accumulator weight
	SysInvalidScale The scale specified by S does not exist
	SysInvalidUnits The units specified by U is not valid
	SysDeviceError The scale is reporting an error condition. W is still updated with the average accumulator value
	SysPermissionDenied The accumulator is not enabled for the specified scale
	SysOK The function completed successfully

	AvgAccum : Real;
	…
	GetAvgAccum (1, AvgAccum);
	function SetAccum (S : Integer; U : Units; W : Real) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[in] W Accumulator value
	SysInvalidScale The scale specified by S does not exist
	SysInvalidUnits The units specified by U is not valid
	SysDeviceError The scale is reporting an error condition
	SysPermissionDenied The accumulator is not enabled for the specified scale
	SysOK The function completed successfully

	AccumValue : Real;
	…
	AccumValue := 110.5
	SetAccum (1, Primary, AccumValue);

	5.1.6 Scale Operation
	function CurrentScale : Integer;
	ScaleNumber : Integer;
	…
	ScaleNumber := CurrentScale;
	function GetMode (S : Integer; VAR M : Mode) : SysCode;
	[in] S Scale number
	[out] M Current display mode
	GrossMode Scale S is currently in gross mode
	NetMode Scale S is currently in net mode
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysDeviceError The scale is reporting an error condition; M is still updated with the current display mode
	SysOK The function completed successfully

	CurrentMode : Mode;
	…
	GetMode (1, CurrentMode);
	function GetUnits (S : Integer; VAR U : Units) : SysCode;
	[in] S Scale number
	[out] U Current display units
	Primary Primary units are currently displayed on scale S
	Secondary Secondary units are currently displayed on scale S
	Tertiary Tertiary units are currently displayed on scale S
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	CurrentUnits : Units;
	…
	GetUnits (1, CurrentUnits);
	function GetUnitsString (S : Integer; U : Units; VAR V : String) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[out] V Current display units string
	Primary Get the Primary units string for scale S
	Secondary Get the Secondary units string for scale S
	Tertiary Get the Tertiary units string for scale S
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysInvalidUnits The units value specified by U does not exist
	SysOK The function completed successfully

	CurrentUnitsString : String;
	…
	GetUnitsString (1, Primary, CurrentUnitsString);
	function InCOZ (S : Integer; VAR V : Integer) : SysCode;
	[in] S Scale number
	[in] V Center-of-zero value
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	ScaleAtCOZ : Integer;
	…
	InCOZ (1, ScaleAtCOZ);
	function InMotion (S : Integer; VAR V : Integer) : SysCode;
	[in] S Scale number
	[out] V In-motion value
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	ScaleInMotion : Integer;
	…
	InMotion (1, ScaleInMotion);
	function InRange (S : Integer; VAR V : Integer) : SysCode;
	[in] S Scale number
	[out] V In-range value
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	ScaleInRange : Integer;
	…
	InRange (1, ScaleInRange);
	function SelectScale (S : Integer) : SysCode;
	[in] S Scale number
	SysInvalidScale The scale specified by S does not exist; the current scale is not changed
	SysOK The function completed successfully

	SelectScale (1);
	function SetMode (S : Integer; M : Mode) : SysCode;
	[in] S Scale number
	[in] M Scale mode
	GrossMode Scale S is set to gross mode
	NetMode Scale S is set to net mode
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysInvalidMode The mode value M is not valid
	SysDeviceError The scale is reporting an error condition; the mode is not changed
	SysOK The function completed successfully

	SetMode (1, GrossMode or NetMode);
	function SetUnits (S : Integer; U : Units) : SysCode;
	[in] S Scale number
	[in] U Scale units
	Primary Primary units will be displayed on scale S
	Secondary Secondary units will be displayed on scale S
	Tertiary Tertiary units will be displayed on scale S
	SysInvalidRequest The scale specified by S is a legal for trade or industrial serial scale
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysInvalidUnits The units value U is not valid
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	SetUnits (1, Secondary);
	function ZeroScale (S : Integer) : SysCode;
	[in] S Scale number
	SysInvalidRequest The scale specified by S is a legal for trade serial scale
	SysInvalidScale The scale specified by S does not exist or is a program scale
	SysLFTViolation The zero operation would violate configured legal-for-trade restrictions for the specified scale; No zero is performed
	SysOutOfRange The zero operation would exceed the configured zeroing limit; No zero is acquired
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	ZeroScale (1);
	function GetCountBy (S : Integer; U : Units; VAR C : Real) : SysCode;
	[in] S Scale number
	[in] U Units (Primary, Secondary, Tertiary)
	[out] C Count-by value
	SysInvalidScale The scale specified by S does not exist
	SysInvalidUnits The units specified by U is not recognized
	SysInvalidRequest The scale specified by S does not support this operation (serial scale)
	SysDeviceError The scale is reporting an error condition; C is still updated with the count-by value
	SysOK The function completed successfully

	CountBy : Real;
	...
	GetCountBy (1, Primary, CountBy);
	function GetGrads (S : Integer; VAR G : Integer) : SysCode;
	[in] S Scale number
	[out] G Grads value
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S does not support this operation (serial scale)
	SysDeviceError The scale is reporting an error condition
	SysOK The function completed successfully

	Grads : Integer;
	...
	GetGrads (1, Grads);
	function SetDFStages (S : Integer; S1 : Integer; S2 : Integer; S3 : Integer) : SysCode;
	[in] S Scale number
	[in] S1 Stage 1
	[in] S2 Stage 2
	[in] S3 Stage 3
	SysInvalidRequest Invalid type
	SysOutOfRange Values have not been assigned
	SysOK The function completed successfully

	SetDFStages (1, 4, 4, 4);
	function SetDFThresholds (S : Integer; Sensitivity : Integer; Threshold : Integer) : SysCode;
	[in] S Scale number
	[in] Sensitivity Sensitivity
	[in] Threshold Threshold
	SysInvalidRequest Invalid type
	SysOutOfRange Values have not been assigned
	SysOK The function completed successfully

	5.1.7 Calibration Data
	function GetLCCD (S : Integer; VAR V : Integer) : SysCode;
	[in] S Scale number
	[out] V Deadload count
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S is not an A/D-based scale
	SysOK The function completed successfully

	function GetLCCW (S : Integer; VAR V : Integer) : SysCode;
	[in] S Scale number
	[out] V Calibrated span count
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S is not an A/D-based scale
	SysOK The function completed successfully

	function GetLCCC (S : Integer; VAR V : Integer) : SysCode;
	[in] S Scale number
	[out] V Load cell count at capacity
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S is not an A/D-based scale
	SysOK The function completed successfully

	function GetWVal (S : Integer; VAR V : Real) : SysCode;
	[in] S Scale number
	[out] V Test weight value
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S is not an A/D-based scale
	SysOK The function completed successfully

	function GetZeroCount (S : Integer; VAR V : Integer) : SysCode;
	[in] S Scale number
	[out] V Deadload count
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S is not an A/D-based scale
	SysOK The function completed successfully

	function GetLiveZeroCounts (S : Integer; VAR V : Integer) : SysCode;
	[in] S Scale number
	[out] V Live zero count
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S is not an A/D-based scale
	SysOK The function completed successfully

	function GetPBZeroCounts (S : Integer; VAR V : Integer) : SysCode;
	[in] S Scale number
	[out] V Live zero count
	SysInvalidScale The scale specified by S does not exist
	SysInvalidRequest The scale specified by S is not an A/D-based scale
	SysOK The function completed successfully

	5.2 System Support
	function Date$ (DT : DateTime) : String;
	procedure DisableHandler (handler);
	SysInvalidRequest The specified handler does not exist
	SysOK The function completed successfully

	function DisplayIsSuspended : Integer;
	procedure EnableHandler (handler);
	SysInvalidRequest The specified handler does not exist
	SysOK The function completed successfully

	function EventChar : String;
	handler Port4CharReceived;
	strOneChar : string;
	begin
	strOneChar := EventChar;
	end;
	function EventConnection : string;
	function EventKey : Keys;
	handler KeyPressed;
	begin
	if EventKey = ClearKey then
	…
	end if;
	end;
	function EventPort : Integer;
	function EventString : String;
	function GetConsecNum : Integer;
	procedure GetDate (DT : DateTime; VAR Year : Integer; VAR Month : Integer; VAR Day : Integer);
	[in] DT DateTime variable name
	[out] Year Year
	[out] Month Month
	[out] Day Day

	function GetIqubeData(port_no : integer; dataType : IQValType; index : integer; VAR data : real) : SysCode;
	SysOutOfRange The array index is less than or equal to 0
	SysInvalidRequest The requested port is not configured as an iQUBE; The value cannot be returned due to the device configuration, trying to address load cell 17; Certain requests while the diagnostic screen is open or an invalid data type is requested
	SysDeviceError The scale is reporting an internal error
	SysOK The function completed successfully

	function GetIQData(Connection Name : string; dataType : IQValType; index : integer; VAR data : real) : SysCode;
	SysOutOfRange The array index is less than or equal to 0
	SysInvalidRequest The requested port is not configured as an iQUBE; The value cannot be returned due to the device configuration, trying to address load cell 17; Certain requests while the diagnostic screen is open or an invalid data type is requested
	SysDeviceError The scale is reporting an internal error
	SysOK The function completed successfully

	function GetKey (timeout : Integer);
	[in] timeout Time-out value

	this_key : Keys;
	…
	DisplayStatus ("Press [Enter] for Yes");
	this_key: = GetKey(0);
	if this_key = EnterKey then
	DisplayStatus ("Yes");
	else
	DisplayStatus ("No");
	end if;
	function GetSoftwareVersion : String;
	procedure GetTime (DT : DateTime; VAR Hour : Integer; VAR Minute : Integer; VAR Second : Integer);
	[in] DT DateTime variable name
	[out] Hour Hour
	[out] Minute Minute
	[out] Second Second

	function GetUID : String;
	procedure Hardware(var hw : HW_array_type);
	None
	function KeyPress (K : Keys) : SysCode;
	SysInvalidMode The indicator is not actually in weigh mode; The TestKey will return SysInvalidMode for all sub-modes of weigh mode (the contact screen) as well as any other mode (time & date entry, or open prompt)
	SysInvalidKey Any Invalid key; softkeys and Undefined Keys are considered invalid
	SysInvalidRequest Processing the key returns invalid or error
	SysOK The function completed successfully

	function LockKey (K : Keys) : SysCode;
	[in] K Key name
	SysInvalidKey The key specified is not valid
	SysOK The function completed successfully

	function LockKeypad : SysCode;
	SysPermissionDenied
	SysOK The function completed successfully

	procedure ProgramDelay (D : Integer);
	[in] D Delay time

	ProgramDelay(200); –Pauses the program for 2 seconds
	SysOK The function completed successfully
	SysDeviceError Function failed to reset

	procedure ResumeDisplay;
	function SetConsecNum (V : Integer) : SysCode;
	[in] V Consecutive number
	SysOutOfRange The value specified is not in the allowed range; The consecutive number is not changed
	SysOK The function completed successfully

	function SetDate (VAR DT : DateTime; VAR Year : Integer; VAR Month : Integer; VAR Day : Integer) : SysCode;
	[out] DT DateTime variable name
	[in] Year Year
	[in] Month Month
	[in] Day Day
	SysInvalidRequest Year, month, or day entry not valid
	SysOK The function completed successfully

	function SetSoftkeyText (K : Integer; S : String) : SysCode;
	[in] K Softkey number
	[in] S Softkey text
	SysInvalidRequest The value specified for K is less than 1 or greater than 10, or does not represent a configured softkey
	SysOK The function completed successfully

	function SetSystemTime (DT : DateTime);
	[in] DT System DateTime

	function SetTime (VAR DT : DateTime; Hour : Integer; Minute : Integer; Second : Integer) : SysCode;
	[out] DT DateTime variable name
	[in] Hour Hour
	[in] Minute Minute
	[in] Second Second
	SysInvalidRequest Hour or minute entry not valid
	SysOK The function completed successfully

	function SetUID (newid : String);
	[in] newid Unit identifier
	SysOK Started Successfully
	SysInvalidFtpConfig FTP Server is not enabled in Features -> FTP -> FTP Enabled
	SysInvalidNetworkConfig Ethernet is not enabled in Communications -> Ethernet -> Enabled
	SysFtpStartFailed ftp server did not start (not password related)

	function STick : Integer;
	SysOk Stopped Successfully

	procedure SuspendDisplay;
	function SystemTime : DateTime;
	function Time$ (DT : DateTime) : String;
	function UnlockKey (K : Keys) : SysCode;
	[in] K Key name
	SysInvalidKey The key specified is not valid
	SysOK The function completed successfully

	function UnlockKeypad : SysCode;
	SysPermissionDenied
	SysOK The function completed successfully

	procedure WaitForEntry (I : Integer);
	[in] I Wait time value

	5.3 Serial I/O
	function Print (F : PrintFormat) : SysCode;
	[in] F Print format
	GrossFmt Gross format
	NetFmt Net format
	TrWInFmt Truck weigh-in format
	TrRegFmt Truck register format (truck IDs and tare weights)
	TrWOutFmt Truck weigh-out format
	SPFmt Setpoint format
	AccumFmt Accumulator format
	AuxFmtx Auxiliary format (x = 1 - 20)
	GrossFmt Gross format
	NetFmt Net format
	SPFmt Setpoint format
	AccumFmt Accumulator format
	PrintFormat1 Print format 1
	PrintFormat2 Print format 2
	PrintFormat3 Print format 3
	PrintFormat4 Print format 4
	SysInvalidRequest The print format specified by F does not exist
	SysQFull The request could not be processed because the print queue is full
	SysOK The function completed successfully

	Fmtout : PrintFormat;
	…
	Fmtout := NetFmt
	Print (Fmtout);
	procedure Send (P : Integer; <number>);
	[in] P Serial port number
	[in] <number> The integer or real number to output

	Send (Port1, 123.55); –sends "<42><F7><19><9A>" (without the quotes or <> symbols) to Port 1
	where:
	<42> = 42 hex (66 decimal)
	<F7> = F7 hex (247 decimal)
	<19> = 19 hex (25 decimal)
	<9A> = 9A hex (154 decimal)
	Send (1, 4276803); –sends "<00>ABC" (without the quotes) to Port 1 - where <00> is an ASCII nul
	procedure SendChr (P : Integer; character : Integer);
	[in] P Serial port number
	[in] character The decimal value of the character to transmit

	SendChr (1, 65); –sends upper-case "A" (decimal 65) to Port 1
	function SendChrArray (P : Integer; data : ChrArray; Length : Integer) : SysCode;
	[in] P Serial port number
	[in] ChrArray The array of characters to output
	[in] Length The number of bytes to transmit
	SysOutOfRange Length < 1 or > 100
	SysInvalidPort The port number specified for P is not valid
	SysOK The function completed successfully

	procedure SendNull (P : Integer);
	[in] P Serial port number

	SendNull (1); –sends an ASCII null character (decimal 00) to Port 1
	function SetPrintText (fmt_num : Integer ; text : String) : Syscode;
	[in] fmt_num User-specified format number
	[in] text Print format text
	SysOutOfRange The text is more than 16 characters
	SysInvalidRequest The specified format number is out of the range of 1–99
	SysOK The function completed successfully

	SetPrintText(1, "User Pgm. Text");
	function StartStreaming (P : Integer) : SysCode;
	[in] P Serial port number
	SysInvalidPort The port number specified for P is not valid
	SysInvalidRequest The port specified for P is not configured for streaming
	SysOK The function completed successfully

	StartStreaming (1);
	function StartStreaming (S : Integer) : SysCode;
	[in] S Stream format number (1-4)
	SysInvalidRequest The stream format specified by S is not configured for streaming
	SysOK The function completed successfully

	StartStreaming (1);
	function StopStreaming (P : Integer) : SysCode;
	[in] P Serial port number
	SysInvalidPort The port number specified for P is not valid
	SysInvalidRequest The port specified for P is not configured for streaming
	SysOK The function completed successfully

	StopStreaming (1);
	function StopStreaming (S : Integer) : SysCode;
	[in] S Stream format number (1-4)
	SysInvalidRequest The stream format specified by S is not configured for streaming
	SysOK The function completed successfully

	StopStreaming (1);
	procedure Write (P : Integer; <arg-list>);
	[in] P Serial port number
	[in] arg_list Print text

	Write (1, "This is a test.");
	procedure Write (P : Integer; <arg-list>);
	[in] P Serial port number
	[in] arg_list Print text

	WriteLn (1, "This is another test.");
	procedure WriteOut (C : String; <arg-list>);
	[in] C Connection port number
	[in] arg_list Print text

	procedure WriteOutLn (C : String; <arg-list>);
	[in] C Connection port number
	[in] arg_list Print text

	5.3.1 880 Port Numbering
	Function(Connection : String) : Syscode;
	[In] Connection This needs to be set to “ADVPRN”
	SysOK The function completed successfully
	if StartDocument("ADVPRN") = SysOk then
	Writeoutln("ADVPRN","String data to print");
	else
	DisplayStatus("Printer Error");
	end if;
	if EndDocument("ADVPRN") = SysOk then
	DisplayStatus("Document Printed");
	else
	DisplayStatus("Printer Error");
	end if;

	5.4 Program Scale
	function SubmitData (scale : Integer; weight : Real; gn : Mode; units : UnitType; tare : Real) : SysCode;
	SysInvalidScale The scale is not set up as a program scale
	SysOK The function completed successfully

	function SubmitDSPData(scale : integer; weight : real; units : string; dp : Decimal_Type) : SysCode;
	SysInvalidScale The scale is not set up as a program scale
	SysOK The function completed successfully

	5.5 Setpoints and Batching
	function DisableSP (SP : Integer) : SysCode;
	[in] SP Setpoint number
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysBatchRunning Setpoint SP cannot be disabled while a batch is running
	SysInvalidRequest The setpoint specified by SP cannot be enabled or disabled
	SysOK The function completed successfully

	DisableSP (4);
	function EnableSP (SP : Integer) : SysCode;
	[in] SP Setpoint number
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysBatchRunning Setpoint SP cannot be enabled while a batch is running
	SysInvalidRequest The setpoint specified by SP cannot be enabled or disabled
	SysOK The function completed successfully

	EnableSP (4);
	function GetBatchingMode : BatchingMode;
	Off Batching mode is off
	Auto Batching mode is set to automatic
	Manual Batching mode is set to manual

	function GetBatchStatus (VAR S : BatchStatus) : SysCode;
	[out] S Batch status
	BatchComplete The batch is complete
	BatchStopped The batch is stopped
	BatchRunning A batch routine is in progress
	BatchPaused The batch is paused
	SysInvalidRequest The BATCHNG configuration parameter is set to OFF
	SysOK The function completed successfully

	function GetCurrentSP (VAR SP : Integer) : Syscode;
	[out] SP Setpoint number
	SysInvalidRequest The BATCHNG configuration parameter is set to OFF
	SysBatchNotRunning No batch routine is running
	SysOK The function completed successfully

	CurrentSP : Integer;
	…
	GetCurrentSP (CurrentSP);
	WriteLn (1, "Current setpoint is " + IntegerToString(CurrentSP,0);
	function GetSPBand (SP : Integer; VAR V : Real) : SysCode;
	[in] SP Setpoint number
	[out] V Band value
	SysInvalidSetpoint The setpoint number specified by SP is less than 1 or greater than the maximum number of setpoints
	SysInvalidRequest The setpoint specified by SP has no band value (BANDVAL) parameter
	SysOK The function completed successfully.

	SP7Bandval : Real;
	…
	GetSPBand (7, SP7BAndval);
	WriteLn (1, "Current Band Value of SP7 is " + RealToString(SP7Bandval,0,2));
	function GetSPCaptured (SP : Integer; VAR V : Real) : SysCode;
	[in] SP Setpoint number
	[out] V Captured weight value
	SysInvalidSetpoint The setpoint number specified by SP is less than 1 or greater than the maximum number of setpoints
	SysInvalidRequest The setpoint is off and has no captured value
	SysOK The function completed successfully

	function GetSPCount (SP : Integer; VAR Count : Integer) : SysCode;
	[in] SP Setpoint number
	[out] Count Count value
	SysInvalidSetpoint The setpoint number specified by SP is less than 1 or greater than the maximum number of setpoints
	SysInvalidRequest The specified setpoint is not a DINCNT setpoint
	SysOK The function completed successfully

	function GetSPDuration (SP : Integer; VAR DT : DateTime) : SysCode;
	[in] SP Setpoint number
	[out] DT Setpoint trip duration
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no DURATION parameter
	SysOK The function completed successfully

	SP3DUR : DateTime;
	…
	GetSPTime (3, SP3DUR);
	WriteLn (Port1, "Current Trip Duration of SP3 is", SP3DUR);
	function GetSPHyster (SP : Integer; VAR V : Real) : SysCode;
	[in] SP Setpoint number
	[out] V Hysteresis value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no hysteresis HYSTER) parameter
	SysOK The function completed successfully

	SP5Hyster : Real;
	…
	GetSPHyster (5, SP5Hyster);
	WriteLn (1, "Current Hysteresis Value of SP5 is " + RealToString(SP5Hyster,0,2));
	function GetSPNSample (SP : Integer; VAR N : Integer) : SysCode;
	[in] SP Setpoint number
	[out] N Sample value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no NSAMPLE parameter
	SysOK The function completed successfully

	SP5NS : Integer;
	…
	GetSPNSample (5, SP5NS);
	WriteLn (1, "Current NSample Value of SP5 is " + IntegerToString(SP5NS,0));
	function GetSPPreact (SP : Integer; VAR V : Real) : SysCode;
	[in] SP Setpoint number
	[out] V Preact value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no preact (PREACT) parameter
	SysOK The function completed successfully

	SP2Preval : Real;
	…
	GetSPPreact (2, SP2Preval);
	WriteLn (1, "Current Preact Value of SP2 is " + RealToString(SP2Preval,0,2));
	function GetSPPreCount (SP : Integer; VAR Count : Integer) : SysCode;
	[in] SP Setpoint number
	[out] Count Preact count value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP is not DINCNT type parameter
	SysOK The function completed successfully

	SP3PCount : Integer;
	…
	GetSPPreCount (3, SP3PCount);
	WriteLn (1, "Current Preact Learn Value of SP3 is " + IntegerToString(SP3PCount,0));
	function GetSPTime (SP : Integer; VAR DT : DateTime) : SysCode;
	[in] SP Setpoint number
	[out] DT Current setpoint trip time
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no TIME parameter
	SysOK The function completed successfully

	SP2TIME : DateTime;
	…
	GetSPTime (2, SP2TIME);
	WriteLn (Port1, "Current Trip Time of SP2 is", SP2TIME);
	function GetSPValue (SP : Integer; VAR V : Real) : SysCode;
	[in] SP Setpoint number
	[out] V Setpoint value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no VALUE parameter
	SysOK The function completed successfully

	SP4Val : Real;
	…
	GetSPValue (4, SP4Val);
	WriteLn (1, "Current Value of SP4 is " + RealToString(SP4Val,0,2));
	function GetSPVover (SP : Integer; VAR V : Real) : SysCode;
	[in] SP Setpoint number
	[out] V Overrange value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no VOVER parameter
	SysOK The function completed successfully

	SP3VOR : Real;
	…
	GetSPVover (3, SP3VOR);
	WriteLn (1, "Current Overrange Value of SP3 is " + RealToString(SP3VOR,0,2));
	function GetSPVunder (SP : Integer; VAR V : Real) : SysCode;
	[in] SP Setpoint number
	[out] V Underrange value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no VUNDER parameter
	SysOK The function completed successfully

	SP4VUR : Real;
	…
	GetSPVunder (4, SP4VUR);
	WriteLn (1, "Current Underrange Value of SP4 is " + RealToString(SP4VUR,0,2));
	function PauseBatch : SysCode;
	SysPermissionDenied The BATCHNG configuration parameter is set to OFF
	SysBatchRunning No batch routine is running
	SysOK The function completed successfully

	function ResetBatch : SysCode;
	SysPermissionDenied The BATCHNG configuration parameter is set to OFF
	SysBatchRunning No batch routine is running
	SysOK The function completed successfully

	function SavesetpointUpdates;
	function SetBatchingMode (M : BatchingMode) : SysCode;
	[in] SP Setpoint number
	[in] M Batching mode
	Off Batching mode is off
	Auto Batching mode is set to automatic
	Manual Batching mode is set to manual
	SysInvalidMode The batching mode specified by M is not valid
	SysOK The function completed successfully

	function SetSPBand (SP : Integer; V : Real) : SysCode;
	[in] SP Setpoint number
	[in] V Band value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no band value (BANDVAL) parameter
	SysBatchRunning The value cannot be changed because a batch process is currently running
	SysOK The function completed successfully

	SP7Bandval : Real;
	…
	SP7Bandval := 10.0
	SetSPBand (7, SP7Bandval);
	function SetSPCount (SP : Integer; Count : Integer) : SysCode;
	[in] SP Setpoint number
	[in] Count Count value
	SysInvalidSetpoint The setpoint number specified by SP is less than 1 or greater than the maximum number of setpoints
	SysInvalidRequest The specified setpoint is not a DINCNT setpoint
	SysOK The function completed successfully

	function SetSPDuration (SP : Integer; DT : DateTime) : SysCode;
	[in] SP Setpoint number
	[in] DT Setpoint trip duration
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no DURATION parameter
	SysBatchRunning The value cannot be changed because a batch process is currently running
	SysOutOfRange The value specified for DT is not in the allowed range for setpoint SP
	SysOK The function completed successfully

	SP3DUR : DateTime;
	…
	SP3DUR := 00:3:15
	SetSPDuration (3, SP3DUR);
	function SetSPHyster (SP : Integer; V : Real) : SysCode;
	[in] SP Setpoint number
	[in] V Hysteresis value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no hysteresis (HYSTER) parameter
	SysBatchRunning The value cannot be changed because a batch process is currently running
	SysOK The function completed successfully

	SP5Hyster : Real;
	…
	SP5Hyster := 15.0;
	SetSPHyster (5, SP5Hyster);
	function SetSPNSample (SP : Integer; N : Integer) : SysCode;
	[in] SP Setpoint number
	[in] N Sample value
	SysInvalidSetpoint The setpoint specified by SP does not exist.
	SysInvalidRequest The setpoint specified by SP has no NSAMPLE parameter.
	SysBatchRunning The value cannot be changed because a batch process is currently running.
	SysOutOfRange The value specified for N is not in the allowed range for setpoint SP.
	SysOK The function completed successfully.

	SP5NS : Integer;
	…
	SP5NS := 10
	SetSPNSample (5, SP5NS);
	function SetSPPreact (SP : Integer; V : Real) : SysCode;
	[in] SP Setpoint number
	[in] V Preact value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no preact (PREACT) parameter
	SysBatchRunning The value cannot be changed because a batch process is currently running
	SysOK The function completed successfully

	SP2PreVal : Real;
	…
	SP2PreVal := 30.0;
	SetSPPreact (2, SP2PreVal);
	function SetSPPreCount (SP : Integer; Count : Integer) : SysCode;
	[in] SP Setpoint number
	[in] Count Preact count value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP is not type DINCNT or Count is less than 0
	SysOK The function completed successfully

	SP3PCount : Integer;
	…
	SP3Pcount := 4;
	SetSPPreCount (3, SP3PCount);
	function SetSPTime (SP : Integer; DT : DateTime) : SysCode;
	[in] SP Setpoint number
	[in] DT Setpoint trip time
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no TIME parameter
	SysBatchRunning The value cannot be changed because a batch process is currently running
	SysOutOfRange The value specified for DT is not in the allowed range for setpoint SP
	SysOK The function completed successfully

	SP2TIME : DateTime;
	…
	SP2TIME := 08:15:00
	SetSPTime (2, SP2TIME);
	function SetSPTime (SP : Integer; DT : DateTime) : SysCode;
	[in] SP Setpoint number
	[in] DT Setpoint trip time
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no TIME parameter
	SysBatchRunning The value cannot be changed because a batch process is currently running
	SysOutOfRange The value specified for DT is not in the allowed range for setpoint SP
	SysOK The function completed successfully

	SP2TIME : DateTime;
	…
	SetTime (SP2Time, 08, 15, 00);
	SetSPTime (2, SP2Time);
	function SetSPValue (SP : Integer; V : Real) : SysCode;
	[in] SP Setpoint number
	[in] V Setpoint value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no VALUE parameter
	SysBatchRunning The value cannot be changed because a batch process is currently running
	SysOutOfRange The value specified for V is not in the allowed range for setpoint SP
	SysOK The function completed successfully

	SP4Val : Real;
	…
	SP4Val := 350.0;
	SetSPValue (4, SP4Val);
	function SetSPVover (SP : Integer; V : Real) : SysCode;
	[in] SP Setpoint number
	[in] V Overrange value
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no VOVER parameter
	SysOK The function completed successfully

	SP3VOR : Real;
	…
	SP3VOR := 35.5
	SetSPVover (3, SP3VOR);
	function SetSPVunder (SP : Integer; V : Real) : SysCode;
	[in] SP Setpoint number
	[in] V Underrange
	SysInvalidSetpoint The setpoint specified by SP does not exist
	SysInvalidRequest The setpoint specified by SP has no VUNDER parameter
	SysOK The function completed successfully

	SP4VUR : Real;
	…
	SP4VUR := 26.4
	SetSPVunder (4, SP4VUR);
	function StartBatch : SysCode;
	SysPermissionDenied The BATCHNG configuration parameter is set to OFF
	SysBatchRunning A batch process is already in progress
	SysOK The function completed successfully

	function StopBatch : SysCode;
	SysPermissionDenied The BATCHNG configuration parameter is set to OFF
	SysBatchNotRunning No batch process is running
	SysOK The function completed successfully

	5.6 Digital I/O Control
	function GetDigAll (S : Integer; VAR V : Integer) : SysCode;
	[in] S Slot number
	[out] V Digital IO status
	SysInvalidRequest The slot does not contain a valid DIO Card
	SysOK SysOK The function completed successfully

	dioStatus : integer;
	GetDigAll(0, dioStatus);
	function GetDigin (S : Integer; D : Integer; VAR V : Integer) : SysCode;
	[in] S Slot number
	[in] D Bit number
	[out] V Digital input status
	SysInvalidRequest The slot and bit assignment specified is not a valid digital input
	SysOK The function completed successfully

	DIGINS0B3 : Integer;
	…
	GetDigin (0, 3, DIGINS0B3);
	WriteLn (1, "Digin S0B3 status is " + IntegerToString(DIGINS0B3,0));
	function GetDigout (S : Integer; D : Integer; VAR V : Integer) : SysCode;
	[in] S Slot number
	[in] D Bit number
	[out] V Digital output status
	SysInvalidRequest The slot and bit assignment specified is not a valid digital output
	SysOK The function completed successfully

	DIGOUTS0B2 : Integer;
	…
	GetDigout (0, 2, DIGOUTS0B2);
	WriteLn (1, "Digout S0B2 status is " + IntegerToString(DIGOUTS0B2,0));
	[in] S Slot number
	SysInvalidRequest The slot and bit assignment specified is not a valid digital output
	SysOK The function completed successfully

	function SetDigout (S : Integer; D : Integer; V : Integer) : SysCode;
	[in] S Slot number
	[in] D Bit number
	[in] V Digital output status
	SysInvalidRequest The slot and bit assignment specified is not a valid digital output
	SysOutOfRange The value V must be 0 (inactive) or 1 (active)
	SysOK The function completed successfully

	DIGOUTS0B2 : Integer;
	…
	DIGOUTS0B2 := 0;
	SetDigout (0, 2, DIGOUTS0B2);
	[in] S Slot number that the DIO card is in
	[in] I Bitmasked integer for all outputs (see bitmask explanation below)
	SysInvalidRequest The slot and bit assignment specified is not a valid digital output
	SysOK The function completed successfully

	5.7 Fieldbus Data
	function GetFBStatus (fieldbus_no : Integer; scale_no : Integer; VAR status : Integer) : SysCode;
	[in] fieldbus_no Fieldbus number
	[in] scale_no Scale number
	[out] status Fieldbus status
	SysInvalidRequest
	SysOK The function completed successfully

	function GetImage (fieldbus_no : Integer; VAR data : BusImage) : SysCode;
	[in] fieldbus_no Fieldbus number
	[out] BusImage Bus image
	SysInvalidRequest
	SysOK The function completed successfully

	function GetImageReal (fieldbus_no : Integer; VAR data : BusImageReal) : SysCode;
	[in] fieldbus_no Fieldbus number
	[out] BusImageReal Bus image
	SysInvalidRequest
	SysOK The function completed successfully

	function SetImage (fieldbus_no : Integer; data : BusImage) : SysCode;
	[in] fieldbus_no Fieldbus number
	[in] BusImage Bus image
	SysInvalidRequest
	SysOK The function completed successfully

	function SetImage (fieldbus_no : Integer; data : BusImageReal) : SysCode;
	[in] fieldbus_no Fieldbus number
	[in] BusImageReal Bus image
	SysInvalidRequest
	SysOK The function completed successfully

	5.8 Analog Output Operation
	function SetAlgout (S : Integer; P : Real) : SysCode;
	[in] S Slot number
	[in] P Analog output percentage value
	SysInvalidPort The specified slot (S) is not a valid analog output
	SysInvalidRequest The analog output is not configured from program control
	SysOK The function completed successfully

	5.9 Email
	<Self Explanatory>
	SysInvalidToAddress Supplied to address is not in the correct format; This does not check if the to address actually exists only if the format is correct
	SysInvalidFromAddress Supplied from address is not in the correct format; This does not check if the to address actually exists only if the format is correct
	SysInvalidSubject Supplied subject is not within length limits; Subject length must be greater than 0 and less than or equal to 128 characters
	SysInvalid NetworkConfig There is an issue with the email configuration in the 1280 setup; Possibilities include incorrect port, incorrect address, invalid username/password and connectivity issues
	function SendEmailFormat (TO : String; FROM : string; SUBJECT : string; PF : PrintFormat) : SysCode;
	<Self Explanatory>
	SysInvalidToAddress Supplied to address is not in the correct format; This does not check if the to address actually exists only if the format is correct
	SysInvalidFromAddress Supplied from address is not in the correct format; This does not check if the to address actually exists only if the format is correct
	SysInvalidSubject Supplied subject is not within length limits; Subject length must be greater than 0 and less than or equal to 128 characters
	SysInvalid NetworkConfig There is an issue with the email configuration in the 1280 setup; Possibilities include incorrect port, incorrect address, invalid username/password and connectivity issues

	5.10 Pulse Input Operation
	function ClearPulseCount (S : Integer) : SysCode;
	[in] S Slot number
	SysInvalidCounter The specified counter (S) is not a valid pulse input
	SysOK The function completed successfully

	function PulseCount (S : Integer; VAR C : Integer) : SysCode;
	[in] S Slot number
	[out] C Current pulse count
	SysInvalidCounter The specified counter (S) is not a valid pulse input
	SysOK The function completed successfully

	function PulseRate (S : Integer; VAR R : Integer) : SysCode;
	[in] S Slot number
	[out] C Current pulse rate
	SysInvalidCounter The specified counter (S) is not a valid pulse input
	SysOK The function completed successfully

	5.11 Display Operation
	procedure ClosePrompt;
	procedure DisplayStatus (msg : String);
	[in] msg Display text

	function GetEntry : String;
	function PromptUser (msg : String) : SysCode;
	[in] msg Prompt text
	SysRequestFailed The prompt could not be opened
	SysOK The function completed successfully

	function PromptPassword (msg : String) : SysCode;
	[in] msg Prompt text
	SysRequestFailed The prompt could not be opened
	SysOK The function completed successfully

	function PromptNumeric (msg : String) : SysCode;
	[in] msg Prompt text
	SysRequestFailed The prompt could not be opened
	SysOK The function completed successfully

	function SelectScreen (N : Integer) : SysCode;
	[in] N Screen number
	SysInvalidRequest The value specified for N is less than 1 or greater than 10 (920i) or 99 (1280)
	SysOK The function completed successfully

	procedure SetEntry (S : String);
	procedure UpdateEntry (userInput : string);
	[in] userInput string value collected from external keyboard to update the data entry box in a prompt

	5.12 Display Programming
	function BusyShow : SysCode;
	SysOK The function completed successfully

	function BusyHide : SysCode;
	SysOK The function completed successfully
	[in] source IP address in quotes (“192.168.10.2”)
	[in] filepath name of the file without an extension (“TruckPic”)

	SysOK The function completed successfully

	procedure ClearGraph (VAR graph_array : DisplayImage) : SysCode;
	[out] graph_array Graph identifier

	function DrawGraphic (gr_num : Integer; x_start : Integer; y_start : Integer; bitmap : DisplayImage; color : Color_type) : SysCode;
	[in] gr_num Graphic number
	[in] x_start X-axis starting pixel location
	[in] y_start Y-axis starting pixel location
	[in] bitmap Graphic bitmap
	[in] color Color type
	SysDeviceError The value specified for gr_num is greater than 100
	SysOK The function completed successfully

	function GraphCreate (graphic_no : Integer; bitmap : DisplayImage; color : Color_type; kind : GraphType) : SysCode;
	[in] graphic_no Graphic number
	[in] bitmap Bitmap
	[in] color Graphic color
	[in] kind Graphic kind
	SysInvalidRequest The DisplayImage specified by bitmap does not exist
	SysOK The function completed successfully

	G_Graph1 : DisplayImage;
	result : Syscode;
	begin
	result := GraphCreate(1, G_Graph1, Black, Bar);
	if result = SysOK then
	result :=GraphInit(71,30,60,110,240);
	end if;
	end;
	function GraphInit (graphic_no : Integer; x_start : Integer; y_start : Integer; height : Integer; width : Integer) : SysCode;
	[in] graphic_no Graphic number
	[in] x_start X-axis starting pixel location
	[in] y_start Y-axis starting pixel location
	[in] height Graphic height
	[in] width Graphic width
	SysInvalidRequest The DisplayImage specified by bitmap does not exist
	SysOutOfRange Specified parameters exceed display height or width, or are too small to accommodate the graphic
	SysDeviceError Internal error
	SysOK The function completed successfully

	G_Graph1 : DisplayImage;
	result : Syscode;
	begin
	result := GraphCreate(1, G_Graph1, Black, Bar);
	if result = SysOK then
	result :=GraphInit(71,30,60,110,240);
	end if;
	end;
	function GraphPlot (graphic_no : Integer; y_value : Real; width : Integer; color : Color_type) : SysCode;
	[in] graphic_no Graphic number
	[in] y_value Pixel height of histogram
	[in] color Color type
	[in] width Pixel width of moving bar
	SysInvalidRequest Graph not initialized
	SysOK The function completed successfully

	result : Syscode;
	weight : real;
	begin
	GetGross(1,Primary,weight);
	result := GraphPlot(1, weight, 1, Black);
	end;
	function GraphScale (graphic_no : Integer; x_min : Real; x_max : Real; y_min : Real; y_max : Real) : SysCode;
	[in] graphic_no Graphic number
	[in] x_min Minimum x-axis value
	[in] x_max Maximum x-axis value)
	[in] y_min Minimum y-axis value
	[in] y_max Maximum y-axis value
	SysInvalidRequest Graph not initialized
	SysOutOfRange A min value (x_min or y_min) is greater than its specified max value
	SysOK The function completed successfully

	GraphScale(1, 10.0, 50000.0, 0.0, 10000.0);
	function SetBargraphLevel (W : Integer; Level : Integer) : SysCode;
	[in] W Bargraph widget number
	[in] Level Bargraph widget level
	SysInvalidWidget The bargraph widget specified by W does not exist
	SysOK The function completed successfully

	function SetLabelText (W : Integer; S : String) : SysCode;
	[in] W Label widget number
	[in] S Label widget text
	SysInvalidWidget The label widget specified by W does not exist
	SysOK The function completed successfully

	function SetNumericValue (W : Integer; V : Real) : SysCode;
	[in] W Numeric widget number
	[in] V Numeric widget value
	SysInvalidWidget The numeric widget specified by W does not exist
	SysOK The function completed successfully

	function SetSymbolState (W : Integer; S : Integer) : SysCode;
	[in] W Symbol widget number
	[in] S Symbol widget state
	SysInvalidWidget The symbol widget specified by W does not exist
	SysOK The function completed successfully

	function SetWidgetVisibility (W : Integer; V : OnOffType) : SysCode;
	[in] W Widget number
	[in] V Widget visibility
	SysInvalidWidget The widget specified by W does not exist
	SysOK The function completed successfully

	function SetWidgetColor (W : Integer; C : String) : SysCode;
	[in] W Widget number
	[in] C Widget color
	SysInvalidWidget Requested widget could not be found
	SysInvalidRequest No string provided for color parameter
	SysOk The function completed successfully

	function SetSymbolColor (W : Integer; C : Integer) : SysCode;
	[in] W Widget number
	[in] C Symbol color, supports 16 colors (VGA)
	SysInvalidWidget Requested widget could not be found
	SysInvalidRequest Invalid color
	SysOk The function completed successfully

	function SetImageWidgetPath (W : Integer; C : String) : SysCode;
	[in] W Widget image
	[in] C Image path
	SysInvalidWidget Requested widget could not be found
	SysOk The function completed successfully

	function SetMenuBarColor (C : String) : SysCode;
	[in] C Color type, uses HTML RGB style
	SysInvalidRequest Invalid type
	SysOk The function completed successfully

	function SetBGColor (C : string; T : string) : SysCode;
	[in] T Text color
	[in] C Background color - name or HTML RGB Style
	SysInvalidRequest Invalid type
	SysOk The function completed successfully

	function SetScaleSymbols (C : String) : SysCode;
	[in] C Color type (black and white only)
	SysInvalidRequest Invalid type
	SysOk The function completed successfully

	5.12.1 Setting Widget Colors
	5.12.2 Image Widget Icons
	5.12.3 Display Charting
	[in] widget_no Chart widget number
	SysOK The function completed successfully
	SysInvalidWidget Requested widget could not be found
	Function ChartInit (widget_no : Integer; fillColor : String; lineColor : String; pointColor : String; maxPoints : Integer) : SysCode;
	[in] widget_no Chart widget number
	[in] fillColor Html color for the fill area of the chart
	[in] lineColor Html color for the line between points, or the outer edge of the bar
	[in] pointColor Html color for data points on the line chart. Value is ignored on a bar chart
	[in] maxPoints Max number of points on the chart; The value is capped at 200 points; If the number of inserted points exceeds this value, the earliest points on the chart are removed
	SysOK The function completed successfully

	function ChartInitStatic (widget_no : Integer; fillColor : String; lineColor : String; pointColor : String; maxPoints : Integer) : SysCode;
	[in] widget_no Chart widget number
	[in] fillColor Html color for the fill area of the chart
	[in] lineColor Html color for the line between points, or the outer edge of the bar
	[in] pointColor Html color for data points on the line chart; Value is ignored on a bar chart
	[in] maxPoints Max number of points on the chart; The value is capped at 8000 points; If the number of inserted points exceeds this value, the earliest points on the chart are removed
	SysOK The function completed successfully

	function ChartPlot (widget_no : Integer; label : String; value : real) : SysCode;
	[in] widget_no Chart widget number
	[in] label Label or name of the data point
	[in] value Value of the data point
	SysOK The function completed successfully

	function ChartSetAnimation (widget_no : Integer; enabled : BooleanType) : SysCode;
	[in] widget_no Chart widget number
	SysOK The function completed successfully

	function ChartRender (widget_no : Integer) : SysCode;
	[in] widget_no Chart widget number
	SysOK The function completed successfully

	function ChartInsertToExisting(widget_no : Integer; label : String; value : real) : SysCode;
	[in] widget_no Chart widget number
	[in] label Label or name of the data point
	[in] value Value of the data point
	SysOK The function completed successfully
	[in] widget_no Chart widget number
	[in] size Point size of the dots in the chart

	SysOK The function completed successfully
	SysInvalidRequest Invalid point size
	SysInvalidWidget Requested widget could not be found

	5.13 Database Operation
	function <DB>.Add : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysDatabaseFull There is no space in the specified database for this record
	SysOK The function completed successfully

	function <DB>.Clear : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysOK The function completed successfully

	function <DB>.Delete : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database
	SysOK The function completed successfully

	function <DB>.FindFirst (I : Integer) : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database
	SysNoSuchColumn The column specified by I does not exist
	SysOK The function completed successfully

	function <DB>.FindLast (I : Integer) : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database
	SysNoSuchColumn The column specified by I does not exist
	SysOK The function completed successfully

	function <DB>.FindNext : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database
	SysOK The function completed successfully

	function <DB>.FindLast : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database
	SysOK The function completed successfully

	function <DB>.GetFirst : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database

	SysOK The function completed successfully
	function <DB>.GetLast : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database
	SysOK The function completed successfully

	function <DB>.GetNext : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database
	SysOK The function completed successfully

	function <DB>.GetPrev : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database
	SysOK The function completed successfully

	function <DB>.Sort (I : Integer) : SysCode;
	[in] I Column number to sort by
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database
	SysOK The function completed successfully

	function <DB>.Update : SysCode;
	SysNoSuchDatabase The referenced database cannot be found
	SysNoSuchRecord The requested record is not contained in the database

	SysOK The function completed successfully
	5.13.1 iRite SQL Feature
	function DBExec (S : String; var R : Integer) : SysCode;
	[in] S SQL query
	[out] R Result set identifier, 0 if there is no result set from the query
	SysInvalidRequest Too many active result sets
	SysPermissionDenied An attempt was made to perform a restricted actions (create, alter or drop table)
	SysRequestFailed SQL query could not be executed
	SysOk The function completed successfully

	function DBNext (R : Integer) : SysCode;
	[in] R Result set identifier
	SysInvalidRequest Invalid result set identifier
	SysNoSuchRecord There are no more records in the result set
	SysRequestFailed Advance could not be completed
	SysOk The function completed successfully

	function DBColumnInt (R : Integer; C : Integer; var V : Integer) : SysCode;
	[in] R Result set identifier
	[in] C Column number
	[out] V Value of the requested column in the result set
	SysInvalidRequest Invalid result set identifier
	SysNoSuchColumn Invalid column number
	SysRequestFailed Incorrect column type
	SysOk The function completed successfully

	function DBColumnInt (R : Integer; C : Integer; var V : Real) : SysCode;
	[in] R Result set identifier
	[in] C Column number
	[out] V Value of the requested column in the result set
	SysInvalidRequest Invalid result set identifier
	SysNoSuchColumn Invalid column number
	SysRequestFailed Incorrect column type
	SysOk The function completed successfully

	function DBColumnInt (R : Integer; C : Integer; var V : String) : SysCode;
	[in] R Result set identifier
	[in] C Column number
	[out] V Value of the requested column in the result set
	SysInvalidRequest Invalid result set identifier
	SysNoSuchColumn Invalid column number
	SysRequestFailed Incorrect column type
	SysOk The function completed successfully

	function DBColumnDT (R : Integer; C : Integer; var V : DateTime) : SysCode;
	[in] R Result set identifier
	[in] C Column number
	[out] V Value of the requested column in the result set
	SysInvalidRequest Invalid result set identifier
	SysNoSuchColumn Invalid column number
	SysRequestFailed Incorrect column type
	SysOk The function completed successfully

	function DBFinalize (R : Integer) : SysCode;
	[in] R Result set identifier
	SysInvalidRequest Invalid result set identifier
	SysOk The function completed successfully

	function DBErrMsg () : String;
	function DTToString (D : DateTime) : SysCode;
	[in] D Date Time value to be formatted

	5.14 Timer Control
	function ResetTimer (T : Integer) : Syscode;
	[in] T Timer number
	SysInvalidTimer The timer specified by T is not a valid timer
	SysOK The function completed successfully

	function ResumeTimer (T : Integer) : Syscode;
	[in] T Timer number
	SysInvalidTimer The timer specified by T is not a valid timer
	SysOK The function completed successfully

	function SetTimer (T : Integer ; V : Integer) : Syscode;
	[in] T Timer number
	[in] V Timer value
	SysInvalidRequest The specified time-out value is less than 0
	SysInvalidTimer The timer specified by T is not a valid timer
	SysOK The function completed successfully

	function SetTimerDigOut (T : Integer ; S : Integer ; D: Integer) : Syscode;
	[in] T Timer number
	[in] S Digital I/O slot number
	[in] D Digital I/O bit number
	SysInvalidRequest The slot or bit number specified is not a valid digital output
	SysInvalidTimer The timer specified by T a not valid timer
	SysOK The function completed successfully

	SetTimer(1,100); –Set value of Timer1 to 100 (1 second)
	SetTimerMode(1,TimerDigoutOn); –Set timer mode to turn on the digital output
	SetTimerDigout(1,0,1); –Set the digital output to control (slot 0, bit 1)
	StartTimer(1); –Start timer
	function SetTimerMode (T : Integer ; M : TimerMode) : Syscode;
	[in] T Timer number
	[in] M Timer mode
	TimerOneShot Timer mode is set to one-shot
	TimerContinuous Timer mode is set to continuous
	TimerDigOutOff One-shot timer sets a digital output off when the timer expires
	TimerDigOutOn One-shot timer sets a digital output on when the timer expires
	SysInvalidTimer The timer specified by T is not a valid timer
	SysInvalidMode The timer mode specified by M is not a valid timer mode
	SysOK The function completed successfully

	function StartTimer (T : Integer) : Syscode;
	[in] T Timer number
	SysInvalidTimer The timer specified by T is not a valid timer
	SysOK The function completed successfully

	function StopTimer (T : Integer) : Syscode;
	[in] T Timer number
	SysInvalidTimer The timer specified by T is not a valid timer
	SysOK The function completed successfully

	5.15 Mathematical Operations
	function Abs (x : Real) : Real;
	function Atan (x : Real) : Real;
	function Ceil (x : Real) : Integer;
	function Cos (x : Real) : Real;
	function Exp (x : Real) : Real;
	function Log (x : Real) : Real;
	function Log10 (x : Real) : Real;
	function Sign (x : Real) : Integer;
	function Sin (x : Real) : Real;
	function Sqrt (x : Real) : Real;
	function Tan (x : Real) : Real;

	5.16 Bit-Wise Operation
	function BitAnd (X : Integer; Y : Integer) : Integer;
	function BitNOT (X : Integer) : Integer;
	function BitOr (X : Integer; Y : Integer) : Integer;
	function BitXor (X : Integer; Y : Integer) : Integer;

	5.17 String Operations
	function Asc (S : String) : Integer;
	function Chr$ (I : Integer) : String;
	[in] I The integer value to be converted

	function Hex$ (I : Integer) : String;
	[in] I The integer value to be converted

	function LCase$ (S : String) : String;
	[in] S The string to be converted to all lower case

	function Left$ (S : String; I : Integer) : String;
	[in] S The source string
	[in] I The number of characters to return in the result

	function Len (S : String) : Integer;
	[in] S The string

	function Mid$ (S : String; start : Integer; length : Integer) : String;
	[in] S The source string
	[in] start Character position to start from
	[in] length The number of characters to return in the result

	function Oct$ (I : Integer) : String;
	[in] I The integer value to be converted

	function Right$ (S : String; I : Integer) : String;
	[in] S The source string.
	[in] I The number of characters to return in the result.

	function Space$ (N : Integer) : String;
	[in] N The number of spaces to be contained in the string

	function UCase$ (S : String) : String;
	[in] S The string to be converted to all upper case

	5.18 Data Conversion
	function IntegerToString (I : Integer; W : Integer) : String;
	[in] I The integer value to be converted
	[in] W The minimum length of the string

	function RealToString (R : Real; W : Integer; P: Integer) : String;
	[in] R Real variable to convert to a string
	[in] W The minimum length of the string
	[in] P Precision or number of places to the right of the decimal place to display

	function StringToInteger (S : String) : Integer;
	[in] S String to convert to an integer

	function StringToReal (S : String) : Real;
	[in] S String to convert to a real value

	function SysCodeToString(Code : SysCode): String;
	[in] Code A value of type SysCode to convert to a value of type String

	5.19 High Precision
	function DecodeExtFloat(weight : ExtFloatArray) : real;

	5.20 File I/O
	function (filename : string; mode : FileAccessMode) : Syscode;
	[in] filename The indicator will look in a folder named whatever the indicator's UID is set for (defaulted to 1) for the filename sent as the parameter. Use the entire path (without the drive)
	[in] mode How the file is to be opened: FileCreate, FileAppend, or FileRead. See FileAccessMode in Section 4.0 on page 35

	SysOk
	SysNoFileSystemFound
	SysPortBusy
	SysFileNotFound
	SysDirectoryNotFound
	SysFileExists
	SysInvalidFileFormat
	SysBadFilename (over 8 characters)
	SysEndOfFile

	function FileOpen (filename : string; device : FileDevice; mode : FileAccessMode) : SysCode;
	SysOk
	SysFileOpen
	SysRequestFailed

	function USBFileClose : SysCode;
	SysOk
	SysNoFileSystemFound
	SysMediaChanged
	SysNoFileOpen

	function FileClose : Syscode;
	SysOk
	SysNoFileOpen

	function USBFileDelete (filename : string) : SysCode;
	Filename -the indicator will look in a folder named whatever the indicator's UID is set for (defaulted to 1) for the filename sent as the parameter
	SysOk
	SysNoFileSystemFound
	SysPortBusy
	SysFileNotFound
	SysDirectoryNotFound
	SysBadfilename

	USBFileDelete(“Testing.txt”);
	function FileDelete (filename : string; device : FileDevice) : Syscode;
	SysOk
	SysFileOpen
	SysFileNotFound

	FileDelete(“Testing.txt”, FTP);
	FileDelete(“Testing.txt”, USB);
	function USBFileExists (filename : string) : SysCode;
	Filename - the indicator will look in a folder named whatever the indicator's UID is set for (defaulted to 1) for the filename sent as the parameter
	SysOk
	SysNoFileSystemFound
	SysPortBusy
	SysInvalidMode
	SysBadfilename

	USBFileExists(“Testing.txt”);
	function FileExists (filename : string; device : FileDevice) : SysCode;
	SysOk
	SysFileOpen
	SysFileNotFound

	FileExists(“Testing.txt”, SDCard);
	FileExists(“Testing.txt”, FTP);
	function ReadLn (VAR data : string) : SysCode;
	Data: this is the string type variable that the data will be placed in to display or print or otherwise be used by the program; It reads one line at a time and the entire line is in this string
	SysOk
	SysNoFileOpen
	SysMediaChanged
	SysNoFileSystemFound
	SysEndOfFile

	Result := ReadLn(sTempString); –Reads a line of data from whatever file is open
	while Result <> SysEndOfFile –Loops, looking at the return code until the end
	loop
	Result := ReadLn(sTempString);
	WriteLn(3, sTempString); –Prints each line read out Port 3
	end loop;
	procedure Write (Port : Integer; data : string);
	Port - Whichever port on the indicator the data will be sent out of. Port 2 is used for USB

	function FileWrite (S : String) : SysCode;
	S - The string to append to the file
	SysOk
	SysNoFileOpen
	SysNoFileSystemFound

	FileWrite(“line of data”);
	function FileWriteLn (S : String) : SysCode;
	S - The string to append to the file
	SysOk
	SysNoFileOpen
	SysNoFileSystemFound

	FileWriteLn(“line of data”);
	function GetUSBStatus : SysCode;
	SysOk
	SysInvalidRequest

	Result := GetUSBStatus;
	function GetUSBAssignment : USBDeviceType;
	dDevice := GetUSBAssignment; –verify the assignment
	if dDevice = USBFileSystem then
	WriteLn(3,"USBFlashDrive");
	elsif dDevice = USBHostPC then
	WriteLn(OutPort,"USBHostPC");
	elsif dDevice = USBPrinter2 then
	WriteLn(OutPort,"USBPrinter2");
	elsif dDevice = USBPrinter1 then
	WriteLn(OutPort,"USBPrinter1");
	elsif dDevice = USBKeyboard then
	WriteLn(OutPort,"USBKeyboard");
	else
	WriteLn(OutPort,"Device Unknown");
	end if;
	function SetUSBAssignment (device : USBDeviceType) : SysCode
	device (see Section 4.0 on page 35)
	SysOk
	SysDeviceNotFound
	SysPortBusy

	SetUSBAssignment(USBHostPC);
	function ReleaseUSBAssignment : SysCode
	SysOk
	SysDeviceNotFound
	SysPortBusy

	ReleaseUSBAssignment;
	function IsUSBDevicePresent (device : USBDeviceType) : SysCode;
	device (see Section 4.0 on page 35)
	SysOk
	SysDeviceNotFound

	Result := IsUSBDevicePresent(USBFileSystem);
	if Result <> SysOk then
	WriteLn(OutPort,"Flash Drive Not Found");
	else
	WriteLn(OutPort,"SysOK");
	end if;
	function SetFileTermin (termin : FileLineTermination) : SysCode;
	SysOk

	SetFileTermin(FileCRLF);
	function DBLoad (db name : String) : SysCode;
	SysOk
	SysNoSuchDatabase
	SysNoFileSystemFound
	SysFileAlreadyOpen
	SysFileNotFound
	SysDirectoryNotFound
	SysInvalidFileFormat
	SysPortBusy
	if DBLoad("Product") = Sysok then
	DisplayStatus("Product Database Loaded into 920i")
	end if;

	function DBSave (db name : String) SysCode;
	SysOk
	SysNoSuchDatabase
	SysNoFileSystemFound
	SysFileAlreadyOpen
	SysFileNotFound
	SysDirectoryNotFound
	SysFileExists
	SysPortBusy
	if DBSave("Product") = Sysok then
	DisplayStatus("Product Database Saved to thumb drive")
	end if;

	5.21 882D Belt Scale Data Acquisition
	function GetMaxCapacity (S : Integer; VAR C : Real) : SysCode;
	[in] S Scale number
	[out] C Scale capacity
	SysInvalidScale The scale specified by S does not exist
	SysOK The function completed successfully

	function GetTotal (S : Integer; T : Integer; V : Real) : SysCode;
	[in] S Scale number
	[in] T Totalizer number (0=master totalizer, 1=totalizer 1, 2=totalizer 2)
	[out] V Current belt totalizer value
	SysInvalidScale The scale specified by S does not exist
	SysInvalidTotalizer The totalizer specified by T does not exist
	SysOK The function completed successfully

	function ResetBeltResetTotal (S : Integer; T : Integer) : SysCode;
	[in] S Scale number
	[in] T Totalizer number (1=totalizer 1, 2=totalizer 2)
	SysInvalidScale The scale specified by S does not exist
	SysInvalidTotalizer The totalizer specified by T does not exist or the master totalizer (0) was specified
	SysOK The function completed successfully

	function GetLoad (S : Integer; V : Real) : SysCode;
	[in] S Scale number
	[out] V Current belt load value
	SysInvalidScale The scale specified by S does not exist
	SysOK The function completed successfully

	function GetSpeed (S : Integer; V : Real) : SysCode;
	[in] S Scale number
	[out] V Current belt speed
	SysInvalidScale The scale specified by S does not exist
	SysOK The function completed successfully

	function GetRate (S : Integer; V : Real) : SysCode;
	[in] S Scale number
	[out] V Current belt rate value
	SysInvalidScale The scale specified by S does not exist
	SysOK The function completed successfully

	function GetTotalizerUnitsString (S : Integer; VAR V : String) : SysCode;
	[in] S Scale number
	[out] V The configured totalizer resolution units string
	SysInvalidScale The scale specified by S does not exist
	SysOK The function completed successfully

	function GetLoadUnitsString (S : Integer; VAR V : String) : SysCode;
	[in] S Scale number
	[out] V The configured load units string
	SysInvalidScale The scale specified by S does not exist
	SysOK The function completed successfully

	function GetSpeedUnitsString (S : Integer; VAR V : String) : SysCode;
	[in] S Scale number
	[out] V The configured belt speed units string
	SysInvalidScale The scale specified by S does not exist
	SysOK The function completed successfully

	function GetRateUnitsString (S : Integer; VAR V : String) : SysCode;
	[in] S Scale number
	[out] V The configured rate resolution units string
	SysInvalidScale The scale specified by S does not exist
	SysOK The function completed successfully

	5.22 Alibi Records
	function AlibiSend(R : Integer, P : Integer) : SysCode;
	[in] R Alibi record number
	[in] P Port number
	SysNoSuchRecord Requested Alibi record does not exist
	SysInvalidPort The port number specified is not valid
	SysOK The function completed successfully

	function AlibiLookup(R : Integer, VAR S : String) : SysCode;
	[in] R Alibi record number
	SysNoSuchRecord Requested Alibi record does not exist
	SysInvalidPort Insufficient string space available
	SysOK The function completed successfully

	6.0 Appendix
	6.1 Event Handlers
	6.2 Compiler Error Messages
	6.3 Database Operations
	6.3.1 Uploading
	6.3.2 Exporting
	6.3.3 Importing
	6.3.4 Clearing
	6.3.5 Downloading

	6.4 Fieldbus User Program Interface
	GetImage(fieldbus_no : integer; var data : BusImage) : SysCode
	SetImage(fieldbus_no : integer; var data : BusImage) : SysCode
	--
	-- Handler Name : BusCommandHandler
	-- Created By : Rice Lake Weighing Systems
	-- Last Modified on : 1/16/2003
	--
	-- Purpose : Example handler skeleton.
	--
	-- Side Effects :
	--
	handler BusCommandHandler;
	--Declaration Section
	busPort : integer;
	data : BusImage;
	i : integer;
	result : SysCode;
	begin
	-- Clear out the data array.
	for i := 1 to 32 loop
	data[i] := 0;
	end loop;
	-- Find out which port (which bus card) started this event.
	busPort := EventPort;
	-- Then read the received data.
	result := GetImage(busPort, data);
	-- Test result as desired
	-- Data interpretation and manipulation goes here.
	-- Finally, put the changed data back.
	result := SetImage(busPort, data);
	-- Test result as desired
	end;

	6.5 Program to Retrieve Hardware Configuration
	6.6 920i User Graphics

