

QubeVu Developer Guide 2

1 Table of Contents

1 TABLE OF CONTENTS ...2

2 INTRODUCTION ..5

2.1 PURPOSE .. 5

2.2 SCOPE ... 5

3 BACKGROUND ..6

4 OVERVIEW ...7

5 WEB SERVICE INTERFACE SPECIFICATIONS ...8

5.1 RETRIEVING THE DIMENSIONS .. 8

5.1.1 Scanning without autotrigger ... 19

5.2 RETRIEVING THE IMAGE .. 19

5.3 SETTING ZERO HEIGHT OF SCAN PLATFORM .. 20

5.3.1 Zero height error messages ... 20

5.4 RETRIEVING BARCODES ... 21

5.4.1 Enabling barcode recognition through capture definition .. 21

5.5 SETTING THE WEIGHT FROM AN EXTERNAL SCALE. ... 21

5.6 RETURNED VALUES... 23

5.6.1 Status .. 23

5.6.2 Extended status ... 24

5.7 CAPTURE DEFINITIONS .. 25

5.7.1 Creating capture definitions .. 25

5.7.2 Listing capture definitions ... 28

5.7.3 Retrieving capture definition details ... 28

5.7.4 Deleting capture definition ... 28

5.8 SYSTEM DATE AND TIME ... 29

5.8.1 Getting system time .. 29

5.8.2 Setting system time and time zone ... 29

5.9 DEVICE INFO ... 29

5.10 RESTARTING ... 31

5.11 MISCELLANEOUS ... 31

5.11.1 Deprecated Function ... 31

6 EXTERNAL INTERFACES: SERIAL, TCP AND HTTP ... 32

6.1 PROTOCOL MODES .. 32

6.2 QUBEVU PROTOCOL .. 32

QubeVu Developer Guide 3

6.2.1 Sample Requests and Responses... 33

6.3 CUBISCAN EMULATION PROTOCOL ... 33

6.3.1 Request and Response .. 33

6.3.2 Supported Commands ... 33

6.3.3 Sample Requests and Responses... 35

6.3.4 Troubleshooting .. 35

6.4 HTTP PROTOCOL .. 36

6.4.1 Request and Response .. 36

6.4.2 Response Format Configuration .. 37

7 APPENDIX A – SHORT FORMAT URLS ... 38

8 APPENDIX B – SAMPLE .NET CLIENT CODE ... 40

9 APPENDIX C – C# .NET CODE SAMPLES .. 42

9.1 DIM101 .. 42

9.2 DIM102 .. 42

9.3 DIM103 .. 42

9.4 DIM104 .. 42

9.5 EXTERNALTRIGGER... 42

9.6 BARCODES .. 43

9.7 BARCODES2D ... 43

9.8 BARCODES2D_DTK ... 43

9.9 BARCODES2D_DTK_WITH_KEY ... 43

9.10 IMAGECONVERSION ... 43

10 APPENDIX D – SAMPLE HTTP DIALOG .. 44

10.1 QUBEVU STATUS QUERY .. 44

10.1.1 Request (Internet Explorer 11, using Ajax polling in web page) ... 44

10.1.2 “Ready to Scan” Response from QubeVu (white-space added to body for readability) 44

10.1.3 “Item Scanned” Sample Response from QubeVu .. 45

11 APPENDIX E – UNIVERSAL WINDOWS PLATFORM SAMPLE (C#) .. 49

11.1 DIM101 .. 49

12 APPENDIX F – QUBEVUBARCODES CLIENT API .. 50

12.1 FUNCTION REFERENCE .. 50

CreateReader .. 50

CreateReaderMT ... 50

DestroyReader ... 50

GetDefaultBcTypes .. 50

QubeVu Developer Guide 4

RecognizeBarcode ... 50

12.2 SUPPORTED BARCODE SYMBOLOGIES .. 50

12.3 CODE SAMPLES.. 51

13 APPENDIX G – POSTEA.QUBEVU2DBCRECOGNITION CLIENT API ... 52

13.1 BARCODERECOGNIZER2D CLASS FUNCTION REFERENCE .. 52

BarcodeRecognizer2D(bcTypes2D) ... 52

ReadImage(Image) .. 52

13.2 BARCODERECOGNIZER2D_DTK CLASS REFERENCE ... 52

BarcodeRecognizer2D_DTK(dtkDeveloperLicenseKey) ... 52

BarcodeRecognizer2D_DTK(dtkDeveloperLicenseKey, dtkRuntimeLicenseKey) 53

BarcodeRecognizer2D_DTK(dtkDeveloperLicenseKey, dtkRuntimeLicenseKey, bcTypes2D) 53

BarcodeRecognizer2D_DTK(dtkDeveloperLicenseKey, dtkRuntimeLicenseKey, barcodeSettingsXml) 53

ReadImage(Image) .. 53

IsDtkLicensed ... 53

GetSettingsXmlString() .. 53

DtkBarcodeToBarcodeInfo(DTKBarReader.Barcode) .. 53

13.3 DTK XML SETTINGS STRING ... 53

DTK XML settings .. 53

DTK XML settings sample .. 55

14 APPENDIX H – SUPPORTED BARCODES .. 56

15 APPENDIX I – ITEMRECT ILLUSTRATION ... 57

16 APPENDIX J – ITEMWIREFRAME SAMPLE ... 58

QubeVu Developer Guide 5

2 Introduction

2.1 Purpose

This document specifies how a QubeVu can be connected to a user’s client system and how that system
can then obtain information from the QubeVu about an item’s dimensions and the item’s image.

2.2 Scope

This document describes the web service, serial port, TCP and HTTP interfaces to QubeVu. The web
service interface is not supported on QubeVu devices prior to QubeVu Mark 4. Serial and TCP interfaces
are supported starting with firmware v. 4.9.2, HTTP beginning with v. 4.9.4. Certain models (e.g. LTL)
don’t implement external interfaces other than the web service API.

Majority of the interfaces’ purpose is to support dimensioning and image retrieval, which are discussed
in the following sections. Some supporting functions, e.g. retrieving device info, restarting and external
scale support are briefly touched on.

Taking advantage of external interfaces, other than the web services, requires additional software
configuration as described in QubeVu Manager Guide. USB serial connectivity may require additional
hardware setup (please contact QubeVu Support for details).

QubeVu Developer Guide 6

3 Background

QubeVu provides a solution to the problem of quickly and reliably measuring the three dimensions of a
mail item as part of the mail acceptance or handling process. It also provides high resolution images of
the top surface of the item that can subsequently be used for various purposes including barcode
recognition and OCR or ICR1.

It often operates in conjunction with a weigh scale that is collecting the weight of the item and the
QubeVu is positioned centrally over the weigh scale so that the dimensions can be captured at the same
time as the weight.

The QubeVu is able to automatically recognise that an item has been placed underneath it and begin the
process of measurement immediately. Hence this information can already be available by the time the
user’s client system requires it.

On installation, the QubeVu is calibrated to suit the location and the specific characteristics of the
individual device.

Configuration data for the QubeVu is held in files on its embedded data storage.

1 OCR or ICR capability requires a separate Leadtools 15 license

QubeVu Developer Guide 7

4 Overview

The QubeVu connects to the user’s workstation with a single Ethernet connector. Beginning with
firmware v. 4.9.2, other types of connectivity is also supported.

The QubeVu requires one power socket.

No specialised software components or drivers are installed on the workstation in the default use cases,
i.e. when taking advantage of the web interface. All necessary software components are embedded in
the device. Client applications can interface with the device via a web service interface. The web service
starts automatically when the device is started.

The interface components defined in this document provide the mechanism by which the client
application can communicate with the QubeVu.

The client processing is started by the user in response to the package being presented by the customer
and after the item has been placed under the QubeVu.

There is a separation between the client support interface and the internal operation of the QubeVu
software within the service. The client interfaces read what information is currently available from the
QubeVu and report the status of the information. These calls do not block waiting for the required
information. This is to prevent the client interface hanging in indeterminate circumstances.

The client application will therefore probably want to implement some form of delayed loop to read the
QubeVu information by monitoring the status on the web interface it is calling. It may also implement its
own time-out to prevent the UI hanging indefinitely if there is a problem.

The web service can be found at the following url: http://{device}/WebServices/QubeVuService.

The web service supports the HTTPPost binding. Client must use this binding to interact with the service.
A C# proxy class (QubeVuServiceHttpPostClient.cs) for the service is available as part of the API. Other
proxy classes may be generated if necessary from the WSDL file. The WSDL file of this service can be
found at http://{device} /WebServices/QubeVuService. A second C# proxy class
(QubeVuServiceAsyncClient.cs) is available for use with Windows Store apps and Universal Windows
Platform development projects (including, but not limited to Windows IoT).

Web services interface is enabled by default, but utilizing other interfaces require additional software
configuration as described in QubeVu Manager Guide. USB serial connectivity may require additional
hardware setup (please contact QubeVu Support for details).

QubeVu Developer Guide 8

5 Web Service Interface Specifications

The web interfaces are implemented within the QubeVuService web service.

Information is only available while an item is on the QubeVu and the QubeVu has had time to process it.
Once the item is removed the information is no longer available.

Status information, including information about the mail item, is retrieved through the Status method.
The Status method only returns a URL for any images captured. Image content is retrieved using
standard HTTP requests.

An XML Error element with the error message will be returned in the event of a software error.

Sample HTTP dialog is included in Appendix D – Sample HTTP Dialog.

5.1 Retrieving the Dimensions

This uses the Status interface: QubeVuService/Status.

It returns a single string value containing an XML document.

The actual content of the XML depends on whether the call is successful or not. This reflected in the
Error element.

If the call is successful, then there is no Error element, or if there is one, then the Code attribute is 0
and the Message attribute is empty string.
If the call fails, then an error code and an error message are returned.
There may be no data as the call is too soon after the item was placed under the QubeVu. In this
case there will be no Dimensions element and the status attribute will indicate why. Dimensions are
only available when status is set to IMAGING or REMOVE – see below for other values. Non-zero
dimensions returned during any status other than IMAGING or REMOVE are considered invalid and
consumer code should ignore them.

<QVStatus
CaptureId="string"
Status="string"
ExtendedStatus="string"
OutOfBounds="int"

>
 <Error Code="int" Message="string">
 <LiveData TrackingId="int"> [Only present if READY]

<TrackerImage Name="string" Url="string"/>
 </LiveData>
 <CapturedData CaptureDefinitionName="string"> [Only present if available]

<ExternalData>
<Barcode>

<TextData>string</TextData>
</Barcode>

</ExternalData>
<DateTime>string</DateTime>
<Weight>float</Weight>
<ScaleData>

<Error Code="int" Message="string"> [Only present if error]

QubeVu Developer Guide 9

<Weight>int</Weight>
<ScaleFactor>int</ScaleFactor>
<IsStable>boolean</IsStable>
<WeightUnit>string</WeightUnit>
<RawData>string</RawData>
<DisplayWeight>string</DisplayWeight>

</ScaleData>
<Dimensions [Only present if available]

Irregular="boolean"
Undersize="int"
Oversize="int"
Refinement="int"
DimUnit="string"
OutOfBounds="int"
UnknownDimensions="boolean"
UnknownDimensionsReason="string">

<Height>decimal</Height>
<Length>decimal</Length>
<Width>decimal</Width>

</Dimensions>
<TrackerImage /> [Only present if available]
<LowResImages> [Only present if available]

<LowResImage /> [Only present if available]
</LowResImages>
<HighResImages> [Only present if available]

<HighResImage> [Only present if available]
<Barcodes/>

</HighResImage>
</HighResImages>

 </CapturedData>
 <Crc>string</Crc>
</QVStatus>

This not a blocking call and may require the client to use a delayed loop to call it until it returns the
required response.

/QVStatus Top level wrapper element

./@CaptureId Sequential capture identifier.
CaptureId is incremented each
time QubeVu processes an item
and is reset when the system is
restarted.

./@Status The current status of the
device/operation. See below for
more details.

./@ExtendedStatus Extended information about the
status of the device/operation.
See below for more details.

./@OutOfBounds Flag indicating that an item

QubeVu Developer Guide 10

extends out of the sensor’s field
of view. (1) Left, (2) Right, (4)
Top, (8) Bottom or a
combination of these.

/QVStatus/LiveData Live data preview, available in
READY state

(firmware 4.9.3 and higher)

./@TrackingId A unique id number designed to
help keep track of live data
content changes. A new value
indicates that clients should
update their display showing
live data content as it has
changed since the last update.

./TrackerImage Details of preview image

./TrackerImage/@Url URL of preview image

./TrackerImage/@Name

/QVStatus/Error Error details

./@Code Error Code

./@Message Error Message

/QVStatus/CapturedData Data captured by QubeVu

./@CaptureDefinitionName Name of capture definition that
has triggered the capture

./@CaptureId Sequential capture identifier.
CaptureId is incremented each
time QubeVu processes an item
and is reset when the system is
restarted.

QubeVu Developer Guide 11

./ExternalData/Barcode/TextData The data read by the externally
attached USB scanner. See
Capture API function for more
info.

(firmware 4.6.2 and higher)

./DateTime The date and time of the scan.

./Weight

./ScaleData Data reported from attached
scale or received through Scale
Service interface.

./Error Scale-specific error details

 ./@Code Error code

 ./@Message Error message

./Weight The weight of the item as an
integer. Use scale factor to find
number of decimal places.

./ScaleFactor Indicates the number of
decimals in ./Weight

./IsStable Indicates whether the weight is
stable or not.

./WeightUnit Specifies the unit in use for the
weight.

./RawData Hex encoded raw data as
received from the scale.

./DisplayWeight Weight and unit reported from
the scale using the scale’s own
unit settings and display format.

/QVStatus/CapturedData/Dimensions The dimensions of the item

./@Irregular Irregular shaped object (true or
false)

./@Undersize Flag indicating undersize Height
(4) or Width (2) or Length (1) or

QubeVu Developer Guide 12

a combination of these.

./@Oversize Flag indicating oversize Height
(4) or Width (2) or Length (1) or
a combination of these.

./@Refinement Refinement of Width (2) or
Length (1) or a combination of
these.

The Refinement field is a bit
field indicating the refinement
state of each dimension and
whether the current certificate
settings require the dimensions
to be refined.

bit1 := set if Length is refined

bit2 := set if Width is refined

bit3 := set if Height is refined

bit4 := set if refinement is
required (this is set under
certification settings)

If refinement is not required (i.e.
bit4 is not set) then the other
bits should be ignored.

As an example a value of 8
means that refinement is
required and Length, Width and
Height are refined.

Note that for the LTL system,
refinement is not required.

./@DimUnit The unit of measure. Valid
values are ‘in’, ‘mm’, ‘cm’ and
‘m’.

QubeVu Developer Guide 13

./@OutOfBounds Flag indicating that an item
extends out of the sensor’s field
of view. (1) Left, (2) Right, (4)
Top, (8) Bottom or a
combination of these.

./@UnknownDimensions When dimensions cannot not be
determined the unit returns 0-s
for length, width and height and
this indicator is set to true.

(firmware 4.4.2 and higher)

./@UnknownDimensionsReason When dimensions cannot not be
determined and
UnknownDimensions is true,
the
UnknownDimensionsReason
attribute provides additional
information about why the
system was not able to
dimension the item. For possible
values and explanations, please
see end of this section.

(firmware 4.4.2 and higher)

./Length Length of object (longer
dimension in the X,Y plane)

./Width Width of object (shorter
dimension in the X,Y plane)

./Height Height of object (dimension in
the Z plane)

/QVStatus/CapturedData/RawDimensions Included if raw (unrounded)
dimensions are enabled

./Length Length of object (longer
dimension in the X,Y plane)

./Width Width of object (shorter
dimension in the X,Y plane)

QubeVu Developer Guide 14

./Height Height of object (dimension in
the Z plane)

/QVStatus/CapturedData/LowResImages Wrapper for zero or more
LowResImage elements

/QVStatus/CapturedData/LowResImages/LowResImage

./@Url URL of low-res image

./@Name Unique name for image.

./ItemRect Either this element or
ItemWireFrame is filled in.

./ItemRect/CenterX Item rectangle’s center on the
captured image, horizontal
coordinate (from left edge of
image).

./ItemRect/CenterY Item rectangle’s center on the
captured image, vertical
coordinate (from top edge of
image).

./ItemRect/D1 Width of item rectangle.

./ItemRect/D2 Height of item rectangle.

./ItemRect/Theta Clockwise rotation of item
rectangle in radian.

./ItemWireFrame Either this element or
ItemWireRect is filled in.

./ItemWireFrame/Faces Multiple faces may be defined

./ItemWireFrame/Faces/Face

./@Visible “false” if specified face is
obstructed from view, “true” if
visible

./Vertices Multiple points may be defined
under this element

./Point

QubeVu Developer Guide 15

./X X pixel coordinate of the vertex

./Y Y pixel coordinate of the vertex

/QVStatus/CapturedData/HighResImages Wrapper for zero or more
HighResImage elements

/QVStatus/CapturedData/HighResImages/HighResImage

./@Url URL of high-res image

./@Name

./ItemRect Either this element or
ItemWireFrame is filled in.

./ItemRect/CenterX Item rectangle’s center on the
captured image, horizontal
coordinate (from left edge of
image).

./ItemRect/CenterY Item rectangle’s center on the
captured image, vertical
coordinate (from top edge of
image).

./ItemRect/D1 Width of item rectangle.

./ItemRect/D2 Height of item rectangle.

./ItemRect/Theta Clockwise rotation of item
rectangle in radian.

./ItemWireFrame Either this element or
ItemWireRect is filled in.

./ItemWireFrame/Faces Multiple faces may be defined

./ItemWireFrame/Faces/Face

./@Visible “false” if specified face is
obstructed from view, “true” if
visible

./Vertices Multiple points may be defined
under this element

QubeVu Developer Guide 16

./Point

./X X pixel coordinate of the vertex

./Y Y pixel coordinate of the vertex

./Barcodes Multiple Barcode elements, one
for each barcode found, may
appear under this item.

./Barcodes/Barcode Details of a single barcode

./RawData Barcode value (deprecated)

./EncodedData Barcode value in hex encoded
format

./DecodedData Barcode value

./TextData Barcode value

/QVStatus/CapturedData/TrackerImage Details of low resolution image
used for finding item

./@Url

./@Name

./ItemRect Either this element or
ItemWireFrame is filled in

./ItemRect Either this element or
ItemWireFrame is filled in.

./ItemRect/CenterX Item rectangle’s center on the
captured image, horizontal
coordinate (from left edge of
image).

./ItemRect/CenterY Item rectangle’s center on the
captured image, vertical
coordinate (from top edge of
image).

./ItemRect/D1 Width of item rectangle.

./ItemRect/D2 Height of item rectangle.

./ItemRect/Theta Clockwise rotation of item

QubeVu Developer Guide 17

rectangle in radian.

./ItemWireFrame Either this element or
ItemWireRect is filled in.

./ItemWireFrame/Faces Multiple faces may be defined

./ItemWireFrame/Faces/Face

./@Visible “false” if specified face is
obstructed from view, “true” if
visible

./Vertices Multiple points may be defined
under this element

./Point

./X

./Y

/QVStatus/Crc Hex string of CRC32 checksum
generated over the entire
response string prior to inserting
the CRC element.
To validate checksum, calculate
CRC32 over the entire response
as it was received but exclude
the CRC element and then
compare to value stored in this
element. Note that checksum
includes all characters including
whitespace and therefore cannot
be calculated on an xml string
that has been reconstructed by
an xml parser from the parsed
nodes.

Error codes and message:

Error
Code Message
0 None.

QubeVu Developer Guide 18

1 Hardware Initialization FAILED.
2 Tracker Config Initialization FAILED.
3 Missing RegistrationMarksCropped.bmp.
4 Setting reference image for Targetfinder FAILED.
5 Loading of Calibration files FAILED.
6 Getting new Images from hardware FAILED.
7 Tracking FAILED.
8 Calibrating.
9 TCP Server Port binding failed
10 TCP Server exception in Processing Client
11 TCP Server time out on Imaging
12 Low res camera needs to be calibrated first!
13 Calibration stopped.
14 Error loading / parsing Configuration.
15 Unable to save Calibration to file.

16 Unable to use name set in Capture/Get Command. CaptureDefinition with name were
not set.

17 Invalid CaptureDefinition command.
18 Unable to delete Calibration files.
19 Unable to Zero Height
20 Failed to write or verify audit trail

Scale-specific error codes and messages:

Error
Code Message
0 None.
1 Time out waiting for stable weight.

UnknownDimensionReason codes and explanation:

UnknownDimensionReason
Code Explanation

<blank> Dimensions determination successful. (UnknownDimensions
attribute is set to “false”)

Timeout Dimensions could not be established within system specified
timeout period.

InvalidBackground
Dimensions could not be established because item-free
background could not be acquired. Please clear the platform,
zero the height and try to scan again.

InvalidBackgroundOrOutOfBounds

Dimensions could not be established because object is out of
bounds or item-free background could not be acquired. Please
clear the platform, zero the height and try to scan again by
placing the item completely within the scan zone.

QubeVu Developer Guide 19

NoDimItem Dimensions could not be established because system is
configured not to measure this type of item.

InvalidDepthData Dimensions could not be established due to an unexpected
inconsistency in the measured depth data.

RemoteSensorVoidPixel Dimensions could not be established due to too many void
pixels in the measured depth data.

Unknown Dimensions could not be established; reason not given.

5.1.1 Scanning without autotrigger

QubeVu is set to detect two major types of objects by default: parcels and flats items. Depending on
system configuration, the 2 types of autotrigger scan features can be completely suppressed. When
autotriggers are disabled, the unit will not detect when an object is placed on the platform
automatically, and the status will stay in READY (i.e. not go to IMAGING). The Capture API call is
designed to initiate a scan manually.

Method signature:

QVServiceResponse Capture(string captureDefinitionName, string captureParameters)

captureDefinitionName - The name of the capture definition which should be used to perform the scan.
If parameter is omitted or empty string, no capture will take place. If name capture definition does not
exist, an error response will be returned.

captureParameters - Used by external barcode scanner. User defined data may be sent in the format
“<ExternalData><Barcode><TextData>string</TextData></Barcode></ExternalData>”. The value of
string sent in will be returned in the status XML under
/QVStatus/CapturedData/ExternalData/Barcode/TextData node.

5.2 Retrieving the Image

In designing the client dialogue that uses the QubeVu it should be kept in mind that the locked-in
QubeVu image is available some time later than the dimensions as it has to determine the dimensions
before it can adjust the camera to take the image(s). The transfer time of the images to the workstation
also takes a finite time.

The image returned is of the top face of item. The high-resolution camera will zoom in according to the
parameters specified in the capture definition.

Starting with version 4.9.3 a low-resolution preview image is also available, but only when the device is
in the READY state. This image updates multiple times per second. Clients can keep track of the
TrackingId attribute (in QVStatus/LiveData tag) which is designed to change every time the preview
data/image content changes indicating that client UI areas should be updated to reflect such change.

This uses HTTP GET: GET {image url} HTTP/1.1

The image url is retrieved from the response of a successful Status call as described above. The image is
only available if the status value is set to REMOVE.

It returns an image file in bitmap format. The colour depth and resolution of the image depends on the
parameters specified in the capture definition.

QubeVu Developer Guide 20

5.3 Setting zero height of scan platform

The QubeVu device records the distance between the camera and the plane of the baseplate during
calibration. The base platform height changes when a scale, which rests on the baseplate, is attached or
removed from the QubeVu setup. When such a change in base platform height occurs it is necessary to
tell the device to measure the height of the distance between the base and the camera anew. This
process is referred to as “zeroing height”. Customers must perform a zero height operation when the
effective platform is raised or lowered for any reason or the device will likely not scan items until this
operation is successfully performed. (This API call does not require QubeVu tracker to be restarted.)

Zeroing height on the QubeVu device involves placing the calibration object on the platform, stepping
back and then making the API call below with “true” passed in as parameter. If the platform has a
completely smooth, uniform surface, then it is not necessary to use a calibration object. If the surface
has any bumps, ridges, a scale with textured top plate or it has rollers then a calibration object must be
placed on the platform before calling SetZeroHeight. Only when the base plane is completely smooth
and flat (a dot or graphic or pattern is OK as long as it’s flat and level with the baseplate) then you can
call the API with the “false” argument and NOT use a calibration object for the zero height process.

Method signature:
QVServiceResponse SetZeroHeight(bool usingCalibrationObject)

The process usually takes 1-6 seconds. During this time the device should be left undisturbed. The
method returns a single string value containing an XML document:
<QVServiceResponse>
 <Error Code="int" Message="string" >
</QVServiceResponse>

At this point the calibration object may be removed from the platform (if one was used). Error Code 0
indicates a successful zero height outcome. Any error code other than 0 should be interpreted as failure
to zeroing height. It is recommended that implementers of the zero height process offer users a chance
to retry zeroing the height upon failure. A retry simply means another call to SetZeroHeight as before.

5.3.1 Zero height error messages

Message Meaning and Resolution

Motion
detected

Motion was detected during the zero height process. Please make sure to not interfere
with the device during zero height operation. Leave the platform clear of objects
completely or leave the platform with just the calibration object placed on top of the
scale (if one is used) or other non-smooth surface.

Height not
stable

Please make sure to not interfere with the device during zero height operation and try
zeroing height again. If problem persists please contact Postea support.

Change in
height
exceeded set
value

There was an unexpectedly large difference in previously known height and newly
measured height. To remedy this situation please make sure that the new height is
closer to the originally measured height or alternatively, you may increase the Zero
height max change (ZeroHeightChangeMaxMM) configuration item in Admin tools
Measurement Settings.

QubeVu Developer Guide 21

5.4 Retrieving barcodes

Reading barcodes requires the capture of an image by the high resolution camera typically at 140dpi or
better but the actual resolution will depend on the barcode to be recognized. QubeVu provides two
approaches to retrieve barcodes from the captured high resolution images.

One approach is to simply specify the types of barcodes of interest in the capture definition. Once this is
setup then QubeVu will search for barcodes in the corresponding high resolution images and will return
the values of each barcode found in response to a Status along with the high resolution images’ urls. The
found barcodes are returned in the Barcodes element of each HighResImage.

Another approach is to use the QubeVuBarcodes Client API. This API can be used by the client
application to find barcodes from a high resolution image captured by QubeVu. The API is simple to use
and is described in detail in the following sections Appendix F – QubeVuBarcodes Client API, Appendix G
– Postea.QubeVu2DBCRecognition Client API, Appendix H – Supported barcodes with sample code
available as described in Appendix C – C# .Net code samples.

The benefit of using the client API is that it can take advantage of the fast processors of the client
hardware and get the results faster.

Note that the number of barcode types enabled will have an effect on performance; the more barcode
types that are enabled the longer it will take to process an image. For optimum performance minimize
the number of barcode types that are enabled.

5.4.1 Enabling barcode recognition through capture definition

Use the CreateCaptureDefinition interface to enable barcode recognition.

E.g.

<CaptureDefinitionDetail Name=\"autotriggerparcel\">
<TimeoutMsecs>0</TimeoutMsecs>
<NoDimItems>Flat</NoDimItems>
<LowResImages></LowResImages>
<HighResImages>

<HighResCamCapture ImageName=\"HighResImage1\">
<MinDpi>140</MinDpi>
<MaxDpi>140</MaxDpi>
<BarcodeCapture>

<BCTypes>CODE128 CODE93 CODE39</BCTypes>
</BarcodeCapture>

</HighResCamCapture>
</HighResImages>

</CaptureDefinitionDetail>

For information on the CreateCaptureDefinition interface please see the Capture Definitions section
below.

5.5 Setting the weight from an external scale.

In a typical configuration a weighing scale is connected to QubeVu to detect item placement and
removal. In some situations, it may be necessary to have the scale connected to the client computer
directly rather than to the QubeVu device. One such scenario is where there is an existing client

QubeVu Developer Guide 22

application that requires direct control of the scale. Operating QubeVu with an external scale requires
that the ‘Scale type’ configuration item be set to ‘EXTERNAL’ and that a process on the client computer
monitors the scale and notifies QubeVu of any weight changes. It is important that the weight change
notification happens in a timely fashion to ensure that it is in synch with what the scan head sees.

Figure 1 - External scale configuration

Client application must use the QubeVu’s scale service to notify the device of any weight change when
using the external scale configuration. The scale web service can be found at the following url:
http://{device}/WebServices/ScaleService.

Use the ScaleService/SetCurrentWeight web service method to notify QubeVu of any weight changes,
regardless of whether the weight is zero or not or the weight is stable or not.

It is important to note that when the QubeVu first starts up it will not enter the ‘Ready’ state until it has
been notified that there is a stable zero weight being output from the scale. This will be automatically
detected if the scale is connected directly to the QubeVu but must be communicated to the QubeVu via
the SetCurrentWeight web service method when using an external scale configuration.

The best way to implement this is to use a background process/thread/task that constantly queries the
current weight from the scale and then calls the SetCurrentWeight method with the values received
from the scale.

Method signature:

QubeVu Developer Guide 23

QVServiceResponse SetCurrentWeight(int weight, int scaleFactor, bool isStable, string
weightUnit)

weight - The current weight returned by the scale.

scaleFactor – A positive of negative power of ten to be used to multiply the value in weight to get the
actual weight in the specified units.

isStable – Indicates whether the specified weight reading is stable or not. A stable weight is required to
start capture. A stable zero weight is required for background updates, however, a non-stable zero
weight or drop in weight will signal item removal/or replacement.

weightUnit – The unit of the weight specified. Currently supported units are ‘g’ for grams and ‘oz’ for
ounces.

The method returns a single string value containing an XML document.
<QVServiceResponse>
 <Error Code="int" Message="string" > [Only present if error]
 <CapturedData CaptureDefinitionName="string"> [Only present if available]
</QVServiceResponse>

5.6 Returned values

5.6.1 Status

Status value Meaning

STARTING The service is starting up.

STARTED The service has started but is not ready for processing. If the device is in this status for
more than a couple of seconds after starting then it is very likely that there is an item
on the platform that needs to be removed. The platform should be clear when the
device/service is starting.

READY The device is ready and waiting to be used – there is no item on it.

TRACKING The device is processing a change in image after an item has been placed under it.

IMAGING The device measurements have been determined and the camera is being adjusted to
take the image.

REMOVE The image has been fully processed – the item can be removed when the client
processing has completed.

WAIT Preparing the device for the next item. The previous image and dimensions are deleted
from memory and the lens is reset.

STOPPING Device is transitioning into STOPPED state.

STOPPED The service has stopped – there is some problem.

CALIBRATING The device is in calibration mode.

QubeVu Developer Guide 24

CONFIGURING The device is in configuration mode.

5.6.2 Extended status

The returned extended status attribute contains none or more comma separated strings that provide
additional information about the status of the device.

Constraint value Meaning

ScaleNotStable This is set during tracking if the scale indicates that the value returned is not a
stable value. This is only used when a recognized scale is connected to the
system. Processing will not progress to the next step until this flag is cleared by
receiving a stable weight from the scale.

MotionDetected This is set during tracking and ready states and indicates that the system has
detected movement. Processing will not progress to the next step while this is
set.

ItemDetected This is set when the system has detected that an item is placed on the device
platform/scale. When a scale is used this indicates that weight returned is not
zero. In ‘scale-less’ mode this indicates that the system cannot find the target
panel.

ItemNotDetected This is set when the system is in ready mode and there is no item on the
platform/scale.

TrackerNotConfident This indicates that the tracker detected an item but it is not confident what the
dimensions of the item are. After a timeout (configurable) the system will
progress to next step and return zero-valued dimensions.

ExceptionOccured This is set when an exception occurs.

DeviceNotStable This is set during tracking if one of the sensors indicates that the sensor value
returned is not a stable value. Processing will not progress to the next step until
this flag is cleared by receiving a stable value from the sensor.

ServiceStarting This is set when the system is initializing.

ConfigMode This is set when the system is in configuration mode, such as during calibration
or image exposure adjustment. A restart operation takes the device out of
configuration mode.

ResultNotStable This is set when the item is being manipulated such as when the item is in the act
of being placed on the platform or removed from it.

ItemOutOfBounds This indicates that the item protrudes outside the measurable area. A
repositioning of the item is necessary.

WaitingToWarmUp This is set during the warmup period. If device is used in a certified-for-trade
application the warm-up period must have been elapsed before certified
measurements can be taken.

PlatformNotClear This is set when there is something on the platform.

QubeVu Developer Guide 25

5.7 Capture definitions

5.7.1 Creating capture definitions

Use the CreateCaptureDefinition interface: QubeVuService/CreateCaptureDefinition

Method signature:
QVServiceResponse CreateCaptureDefinition(string name, string definitionString)

name - The name of the capture definition to be created

definitionString – The XML string describing the capture definition.

<CaptureDefinitionDetail Name="string" >
<TimeoutMsecs>int</TimeoutMsecs>
<NoDimItems>nodim_options</NoDimItems>
<LowResImages>

<LowResCamCapture ImageName="string" >
<ResX>int</ResX><ResY>int</ResY>
<Markings>

<SerialNumber Visible="boolean"/>
<DateTimeStamp Visible="boolean"/>
<ScanId Visible="boolean"/>
<Dimensions Visible="boolean"/>
<Indicators Visible="boolean"/>
<ItemOutline Visible="boolean"/>

</Markings>
</LowResCamCapture>

</LowResImages>
<HighResImages>

<HighResCamCapture ImageName="string">
<MinDpi>int</MinDpi>
<MaxDpi>int</MaxDpi>
<BarcodeCapture>

<BCTypes>bctype_list</BCTypes>
</BarcodeCapture>

</HighResCamCapture>
</HighResImages>

</CaptureDefinitionDetail>

The method returns a single string value containing an XML document.
<QVServiceResponse>
 <Error Code="int" Message="string" > [Only present if error]
 <CapturedData CaptureDefinitionName="string"> [Only present if available]
</QVServiceResponse>

/CaptureDefinitionDetail Top level wrapper element

./@Name Name of the capture
definition.

QubeVu Developer Guide 26

./TimeoutMsecs The system will report a
timeout when it is unable to
detect an item within the time
specified by the capture
definition. If the timeout is set
to zero, then system will
continue trying indefinitely.

(firmware 4.4.2 and higher)

./NoDimItems Specifies the type of items
that should be processed
without dimensioning. For
LTL systems this must be set
to ‘None’. See table below for
more options.

/CaptureDefinitionDetail/LowResImages/LowResCamCapture Low resolution image
parameters

./ResX Specifies the X resolution of
the low resolution image to
be taken. For LTL sytems this
should be 640.

./ResY Specifies the Y resolution of
the low resolution image to
be taken. For LTL sytems this
should be 480.

./Markings/SerialNumber/@Visible Specifies whether to show the
serial number on the low
resolution image.

./Markings/DateTimeStamp/@Visible Specifies whether to show the
date/time stamp on the low
resolution image.

./Markings/ScanId/@Visible Specifies whether to show the
scan id on the low resolution
image.

./Markings/Dimensions/@Visible Specifies whether to show the
dimensions on the low

QubeVu Developer Guide 27

resolution image.

./Markings/Indicators/@Visible Specifies whether to show the
indicators (over size, under
size, unrefined) on the low
resolution image.

./Markings/ItemOutline/@Visible Specifies whether to show the
item outline (bounding box)
on the low resolution image.

/CaptureDefinitionDetail/HighResImages/HighResCamCapture High resolution image
parameters. Not applicable to
LTL systems.

The following table describes the valid values for nodim_options.

No dim option Meaning

None Dimension all items. This is the default.

Flat Do not try dimensioning flats – i.e. items that are
taller than the flat threshold.

Parcel Do not try dimensioning parcels- i.e. items than
that are not taller than the flat threshold.

All Do not try dimensioning any items.

The following table describes the valid values for bctype_list. Multiple values must be separated by a
space.

BC Types Meaning

EAN13 Enable decoding of EAN13 barcodes.

CODE128 Enable decoding of CODE128 barcodes.

CODE39 Enable decoding of CODE39 barcodes.

CODE93 Enable decoding of CODE93 barcodes.

EAN8 Enable decoding of EAN8 barcodes.

UPCE Enable decoding of UPCE barcodes.

UPCX Enable decoding of UPCX barcodes.

INT25 Enable decoding of INT25 barcodes.

CODABAR Enable decoding of CODABAR barcodes.

QubeVu Developer Guide 28

PATCHCODE Enable decoding of PATCHCODE barcodes.

DATAMATRIX Enable decoding of DATAMATRIX barcodes.

QR Enable decoding of QR barcodes.

PDF417 Enable decoding of PDF417 barcodes.

5.7.2 Listing capture definitions

List all capture definitions defined in QubeVu, one CaptureDefinition XML element for each definition.
Use the CaptureDefinitionList interface: QubeVuService/CaptureDefinitionList

Method signature:
QVCaptureDefinitionList CaptureDefinitionList(string filter)

filter – Ignored. May be omitted.

The method returns an XML document.
<QVCaptureDefinitionList>
 <Error Code="int" Message="string" > [Only present if error]
 <CaptureDefinitions>

<CaptureDefinition Name="string">
 </CaptureDefinitions>
</QVCaptureDefinitionList>

5.7.3 Retrieving capture definition details

Retrieve details of specified capture definition.

Method signature:
CaptureDefinitionDetail GetCaptureDefinition(string name)

name – Name of capture definition you wish to retrieve.

The method returns an XML document. The details of CaptureDefinitionDetail XML are defined earlier in
this section.

5.7.4 Deleting capture definition

Delete the specified capture definition.

Method signature:
QVServiceResponse DeleteCaptureDefinition(string name)

name – Name of capture definition you wish to delete.

The method returns an XML document. An Error XML element with the error message will be returned.
Code of 0 and empty Message attribute indicates success. If the capture definition specified does not
exist, an error code 16 will be returned. For a complete list of error codes and messages please refer to
the beginning of this section.

QubeVu Developer Guide 29

<QVServiceResponse>
 <Error Code="int" Message="string" >
</QVServiceResponse>

5.8 System Date and time

5.8.1 Getting system time

Gets system time and date in specified format.

Method signature:
QVSystemTime GetSystemTime(string format)

format - Format should be +sequence as define here: http://linux.die.net/man/1/date. If no format is
provided (i.e. parameter not sent in POST data or specified as empty string), then +%Y%m%d%H%M%S %z
%Z will be used, which means YYYYMMDDHHMMSS -0500 EST

5.8.2 Setting system time and time zone

Sets system time and date in specified format.

Method signature:
QVServiceResponse SetSystemTime(string time, string timezone)

time - Time must use format YYYYMMDDHHMMSS or (e.g. you might use
DateTime.Now.ToString("yyyyMMddHHmmss") to form the string you later send in C#).

timezone - Time zones are based on Ubuntu Trusty timezones, e.g. "America/New_York", or
“US/Eastern”. For a complete list, please refer to
http://manpages.ubuntu.com/manpages/trusty/man3/DateTime::TimeZone::Catalog.3pm.html

5.9 Device info

DeviceInfo call reports hardware and network properties of the device. The URL is similar to previous
service calls:

http://{QubeVu_host}/Webservices/QubeVuService/DeviceInfo

It returns a single string value containing an XML document.
<QVDeviceInfo xmlns="http://postea.com/WebServices/QubeVu">
 <Error Message="None." Code="0"/>
 <DeviceInfo>

<ModelNo>string</ModelNo>
<Manufacturer>string</Manufacturer>
<FirmwareVersion>string</FirmwareVersion>
<SerialNo>string</SerialNo>
<CertificateNo>string</CertificateNo> [Only present if available]
<CertificateType>string</CertificateType> [Only present if available]
<FirmwareCrc>string</FirmwareCrc>

 </DeviceInfo>

QubeVu Developer Guide 30

 <NetworkInfo>
<Ip>string</Ip>
<NetworkMask>string</NetworkMask>
<Gateway>string</Gateway>
<IsDhcp>boolean</IsDhcp>
<LeaseExpires>string</LeaseExpires>
<MacAddress>string</MacAddress>
<Hostname>string</Hostname>
<SslEnabled>boolean</SslEnabled>

 </NetworkInfo>
</QVDeviceInfo>

/QVDeviceInfo/DeviceInfo Device hardware information and certification status
wrapper

./ModelNo Device model.

./Manufacturer Manufacturer of the device.

./FirmwareVersion Version of the currently installed firmware.

./SerialNo Serial number of the unit.

./CertificateNo If a certified set of configuration is in effect this element
shows the certificate number. (E.g. 15-023P) Always
returns empty element for non-certified firmware.

./CertificateType If a certified set of configuration is in effect this element
shows the certificate number. (E.g. NTEP) Always returns
empty element for non-certified firmware.

./FirmwareCrc Firmware CRC check bytes. Used in legal-for-trade
certification.

/QVDeviceInfo/NetworkInfo Network information wrapper

./Ip Public IP address of device. E.g. 192.168.1.2

./NetworkMask Network mask for the unit. E.g. 255.255.255.0

./Gateway Gateway for the network interface of QubeVu. E.g.
192.168.1.1

./IsDhcp True if IP address is dynamically acquired, false if static IP.

./LeaseExpires If present, the date and time when DHCP lease expires. E.g.
2016/12/31 23:59:59

./MacAddress MAC address of the device.

./Hostname Hostname of QubeVu unit.

./SslEnabled True if SSL is enabled, false otherwise. QubeVu Manager

QubeVu Developer Guide 31

and the WS API is accessible through HTTPS in addition to
HTTP, when enabled.

(The elements listed above may return empty under certain conditions. Consumers of the API
should ensure their code is prepared to handle such cases.)

5.10 Restarting

Restarts the QubeVu service or device.

Method signature:
QVServiceResponse Restart(string restartMode)

restartMode - When omitted or passing an empty string, the API call restarts the tracking module. This
is usually necessary when configuration settings are changed (excludes capture definition changes), or
when a new scale is connected. A restart is also necessary to exit configuration mode. Accessing certain
administrative pages from QubeVu Manager will result in the device switching to configuration mode.

Passing “REBOOT” for restartMode parameter will result in a complete shut down and restart of the
QubeVu unit.

5.11 Miscellaneous

5.11.1 Deprecated Function

Call to a deprecated API function will result in an HTTP 404 (Not Found) error response.

Method signature:
QVServiceResponse SetZero()

QubeVu Developer Guide 32

6 External Interfaces: Serial, TCP and HTTP

Serial interface communication is possible using USB and serial cables. For more information about cable
hardware setup, please contact QubeVu Support. The use of TCP or HTTP protocols do not require any
additional hardware setup.

Serial, TCP and HTTP interfaces must be enabled in QubeVu’s configuration. Please refer to QubeVu
Manager Guide for configuration details.

Serial and TCP interfaces use the same protocol formats for sending data to the client device (PC).

6.1 Protocol Modes

The configuration of the serial or TCP interfaces may be set to one of the following options:

Off – QubeVu will not be responding to incoming serial port (or TCP) commands. (default)
QubeVu – A very simple QubeVu protocol is used. Only the Dimension command is valid. The device
will return ‘?’ to all other commands. Control characters are omitted.
Cubiscan 110/150 – In Cubiscan emulation mode, a more comprehensive command set is supported
as described below. Please note that only a subset of all commands supported by Cubiscan products
are implemented by QubeVu.

Special character symbols are based on standard ASCII notation:

Character or symbol Decimal Hexadecimal Meaning

<STX> 2 0x02 Start of Text

<ETX> 3 0x03 End of Text

<LF> 10 0x0A Line Feed

<CR> 13 0x0D Carriage Return

6.2 QubeVu Protocol

Command

Description Request Response

Dimension

Causes the QubeVu to send the dimension and
weight data to the client computer.

D<CR> {length} x {width} x {height}
{dimUnit}
{displayWeight}<CR><LF>

Error handling

Unit will return following response when
dimensions are not available.

D<CR> 0 x 0 x 0 {dimUnit}<CR><LF>

QubeVu Developer Guide 33

Invalid command. … ?<CR><LF>

DisplayWeight note: displayWeight above is the same value which appears in /Status web service API
call. (XPath: /QVStatus/CapturedData/ScaleData/DisplayWeight) It is the weight and weight unit
(combined) as reported from the scale using the scale’s own unit settings and display format. If a scale is
not connected then DisplayWeight may be blank (see example below).

6.2.1 Sample Requests and Responses

1. Dimension Command Request: D<CR>

Response: 9.75 x 7.25 x 3.50 in<CR><LF>

2. Dimension Command Request: D<CR>

Response: 0 x 0 x 0 in<CR><LF>

3. Invalid Command Request: M<CR>

Response: ?<CR><LF>

6.3 Cubiscan Emulation Protocol

6.3.1 Request and Response

Each request must be made using the following format:

<STX><COMMAND><ETX><CR><LF>

The response will be either an acknowledgement or a negative acknowledgement (error condition) in
the formats below:

Acknowledgement: <STX><COMMAND>A<DATA><ETX><CR><LF>

Negative acknowledgement: <STX><COMMAND>N<ETX><CR><LF>

6.3.2 Supported Commands

Command

Description Request
<COMMAND>

Response

Continuous Measure and Measure

Causes the QubeVu to transmit the
dimension and weight data of the
package to the client computer.

C or M <STX>MAH000000,
L<LENGTH ###.#>,
W<WIDTH ###.#>,
H<HEIGHT ###.#>,
<M/E for metric/US Customary>,

QubeVu Developer Guide 34

K<WEIGHT ###.##>,
D<DIMWEIGHT ###.##>,
<M/E for metric/US Customary>,
F<DIMWEIGHT FACTOR ####>,
D<ETX><CR><LF>

e.g.

<STX>MAH000000,
L009.8,W007.2,H003.5,E,
K000.00,D000.00,E,
F0138,D<ETX><CR><LF>

Error handling

Unit will return following response
immediately when dimensions are not
available.

C or M Same format as above, but all dimension
and weight values will be 0 (see sample
below)

Invalid command. … <STX>?N<ETX><CR><LF>

Test

This command causes the device to
reply with a response of TA00
meaning that QubeVu is ready and
responding to transmissions from the
client. If the client receives no
response from the unit after sending
this command, an error condition
exists in the communications between
the host and controller.

T <STX>TA00<ETX><CR><LF>

Units

This command causes the device to
report its current modes of operation.

U When QubeVu uses the metric system, the
response will be:

<STX>UAMMD0000100000<ETX><CR><LF>

For US Customary:

<STX>UAEED0000100000<ETX><CR><LF>

Values

This command causes the device to
report all its internal parameters as
default values (mostly as 0-s). This
command is implemented for
compatibility.

V <STX>VA0.00,0.00,0.00,0.00,
0000,0000,0000,0000,0.00,
0.00,0.00,0.00,0.00,0.00,0.00,
0.00,00,00,00,00,000,000,000,
000,100L,100,1.000<ETX><CR><LF>

Zero Height

Causes the device to set the zero
height of the scan platform. (Do not

Z <STX>ZA<ETX><CR><LF>

QubeVu Developer Guide 35

use a calibration object to zero
height.)

Read IP Address

This command is used to read the
current IP address setting of the
device.

~I <STX>~IA<IP><ETX><CR><LF>

Read TCP Port

This command is used to read the
current TCP port of the device.

~P <STX>~PA<PORT><ETX><CR><LF>

Read Subnet Address

This command is used to read the
current subnet mask setting of the
device.

~N <STX>~NA<IP><ETX><CR><LF>

Read Gateway Address

This command is used to read the
currently specified gateway’s IP
address from the device.

~G <STX>~GA<IP><ETX><CR><LF>

Note: Certain commands (‘D’, ‘”’, ‘F’, ‘L’, ‘S’, ‘#’, etc.) do not return a negative acknowledgement
message. This is behavior is intentional and improves compatibility in some situations.

6.3.3 Sample Requests and Responses

1. Test Command Request: <STX>T<ETX><CR><LF>

Response: <STX>TA00<ETX><CR><LF>

2. Invalid Command Request: <STX>A<ETX><CR><LF>

Response: <STX>?N<ETX><CR><LF>

3. Measure Command Request: <STX>C<ETX><CR><LF>
OR
<STX>M<ETX><CR><LF>

Response:
<STX>MAH000000,L009.8,W007.2,H003.5,E,K000.00,D000.00,E,F0138,D<ETX><CR><LF>
OR
<STX>MAH000000,L000.0,W000.0,H000.0,E,K000.00,D000.00,E,F0138,D<ETX><CR><LF>

4. Units Command Request: <STX>U<ETX><CR><LF>

Response: <STX>UAEED0000100000<ETX><CR><LF>

6.3.4 Troubleshooting

Testing TCP connectivity is straightforward on Windows. Open a command prompt and type:

QubeVu Developer Guide 36

telnet <QubeVu_IP> <TCP_port>

e.g. telnet 169.254.1.1 1024

The command screen should turn blank when the connection is made successfully and the session
begins.

QubeVu protocol does not use control characters. Simply type: D<ENTER> to get dimensions.

To test the Cubiscan emulation mode, you can send <STX> character by pressing CTRL+B, and <ETX>
using CTRL+C. E.g., to send a Test command, type the following sequence: <CTRL+B>T<CTRL+C><ENTER>

You should see a response similar to this:

6.4 HTTP Protocol

When HTTP protocol is enabled, it is possible to interface with QubeVu in a manner that is compatible
with ParcelCube 900 R2 device.

6.4.1 Request and Response

Clients using this interface should send well-formed HTTP GET messages (similarly to web browsers’
implementation). The response will be a text/plain MIME type message. The response will contain
dimension and weight information when available, or 0-s when such information is not available. The
order of the data fields is determined by configuration which can be modified in QubeVu Manager.

Sample requests and responses are included below for scenarios when (1) data is not available and (2)
when it is. […] markers represent omitted content to preserve brevity in order to better illustrate
important parts of the dialog.

GET http://192.168.2.55:8080/ HTTP/1.1
Host: 192.168.2.55:8080
User-Agent: [...]
Accept: text/plain [or */*]
[...]

HTTP/1.1 200 OK
Date: Mon, 23 Oct 2017 17:25:47 GMT
Server: Apache/2.4.7 (Ubuntu)
Content-Length: 23
Content-Type: text/plain
[...]

0;0;0;0;0;0;;;;;;;0;0;0

--

QubeVu Developer Guide 37

GET http://192.168.2.55:8080/ HTTP/1.1
Host: 192.168.2.55:8080
User-Agent: [...]
Accept: text/plain [or */*]
[...]

HTTP/1.1 200 OK
Date: Mon, 23 Oct 2017 17:25:52 GMT
Server: Apache/2.4.7 (Ubuntu)
Content-Length: 41
Content-Type: text/plain
[...]

9.75;7.00;3.75;0;0;0;;;;;;;9.75;7.00;3.75

6.4.2 Response Format Configuration

The format configuration string is stored in QubeVu’s options, under HttpEmulationFormat setting (also
exposed on the General Settings page of QubeVu Manager). The default response format is:

%LENGTH%;%WIDTH%;%HEIGHT%;0;%WEIGHT%;0;;;;;;;%LENGTH%;%WIDTH%;%HEIGHT%

The tokens in the format string correspond to values as if they were parsed from the XML result of a
Status API call described in Section 5.1 Retrieving the Dimensions.

Token XPath from Status API call

%LENGTH% /QVStatus/CapturedData/Dimensions/Length

%WIDTH% /QVStatus/CapturedData/Dimensions/Width

%HEIGHT% /QVStatus/CapturedData/Dimensions/Height

%DIMUNIT% /QVStatus/CapturedData/Dimensions/@DimUnit

%WEIGHT% /QVStatus/CapturedData/ScaleData/Weight (scaled by
/QVStatus/CapturedData/ScaleData/ScaleFactor)

Note: %WEIGHT% - not the same as raw Status XML. The ScaleFactor
is already applied to the raw <Weight> number value.

%DISPLAYWEIGHT% /QVStatus/CapturedData/ScaleData/DisplayWeight

%%% % (literal)

QubeVu Developer Guide 38

7 Appendix A – Short format URLs

Many API calls can be accessed using a short form URL. The use of these short forms are not
recommended in a production system as they can change without notice.

Short form URL (case sensitive)

e.g. http://{device}/status

Production URL (case indifferent)

e.g. http://{device}/WebServices/QubeVuService/Status

/status /WebServices/QubeVuService/Status

Querying real-time device information

/status

Managing tracker engine lifetime

/restart

/stop

/start

Troubleshooting and maintenance

/log

/log_1

/extractlog

Querying configuration and device info

/config

/options

/deviceinfo /WebServices/QubeVuService/DeviceInfo

Display pages (short URLs are intended for production)

Short form URL (case sensitive) Alternate URL

/display

/operatordisplay
/certified/displays/dsdisplay.php

(weight panel is shown depending on SuppressScaleData setting)

/customerdisplay /certified/displays/dsdisplay.php?pgtype=customer

(weight panel is shown depending on SuppressScaleData setting)

/dimonlydisplay /certified/displays/dsdisplay.php?pgtype=dimonly

/certified/displays/dsdisplay.php?pgtype=dimonlyoperator

/dimandweightdisplay /certified/displays/dsdisplay.php?pgtype=dimandweight

/certified/displays/dsdisplay.php?pgtype=dimandweightoperator

QubeVu Developer Guide 39

/dimonlycustomerdisplay /certified/displays/dsdisplay.php?pgtype=dimonlycustomer

/dimonlyoperatordisplay /certified/displays/dsdisplay.php?pgtype=dimonlyoperator

/dimandweightcustomerdisplay /certified/displays/dsdisplay.php?pgtype=dimandweightcustomer

/dimandweightoperatordisplay /certified/displays/dsdisplay.php?pgtype=dimandweightoperator

QubeVu Developer Guide 40

8 Appendix B – Sample .Net client code

This appendix contains the source code for a C# class the uses the API defined above for testing
purposes. Sample code in other languages such as Java, JavaScript are also available upon request.

1) Create new project

Create new Console Application project and name it Dim101_cs

2) Add references

Add System.EnterpriseServices reference

Add System.Web.Services reference

3) Add web service client proxy

Add QubeVuServiceHttpPostClient.cs to project

4) Add sample code

Paste following code into Program.cs

/*
* QubeVu Dimensioning Sample Code #1
*
* Include QubeVuServiceHttpPostClient.cs in the project.

 *
* The following references are required by QubeVuServiceHttpPostClient.cs:
* System.EnterpriseServices
* System.Web.Services
* System.Xml
*
*/

using System;

using QubeVuWebService; // needed for QubeVuService class - defined in QubeVuServiceHttpPostClient.cs

namespace Dim101_cs
{
 class Program
 {

static void Main(string[] args)
{

// * modify this line below * - replace default IP address of QubeVu with your own unit's IP
string qubeVuHost = "169.254.1.1";

QubeVuService qubeVuService;

//
// construct web service url using specified hostname
//
if (args.Length > 0) { qubeVuHost = args[0]; }

 string webServiceUrl = "http://" + qubeVuHost + "/WebServices/QubeVuService";
Console.WriteLine("Connecting to {0} ...", webServiceUrl);

//
// create an instance of the QubeVu service
//
qubeVuService = new QubeVuService();

//
// set web service parameters: url, timeout
//
qubeVuService.Url = webServiceUrl;
qubeVuService.Timeout = 1000;

//

QubeVu Developer Guide 41

// request status from QubeVu
//
QVStatus qvStatus = qubeVuService.Status();
Console.WriteLine("Connection successful");

//
// show status
//
Console.WriteLine("Status: {0} Capture Id: {1} Ex status: {2}",

qvStatus.Status, qvStatus.CaptureId, qvStatus.ExtendedStatus);

// show dims and tracker image url if available
if (qvStatus.Status == "IMAGING" || qvStatus.Status == "REMOVE")

 {
Console.WriteLine("Dimensions: {0} x {1} x {2} ({3})", qvStatus.CapturedData.Dimensions.Length,

qvStatus.CapturedData.Dimensions.Width,
 qvStatus.CapturedData.Dimensions.Height,

qvStatus.CapturedData.Dimensions.DimUnit);
Console.WriteLine("Tracker image: {0}", qvStatus.CapturedData.TrackerImage.Url);

}

// show image url from high resolution camera if available
if (qvStatus.Status == "REMOVE")
{

if (qvStatus.CapturedData.HighResImages != null && qvStatus.CapturedData.HighResImages.Length > 0)
{

Console.WriteLine("High res image: {0}", qvStatus.CapturedData.HighResImages[0].Url);
}

}

Console.WriteLine("\n\nPress any key to terminate");
Console.ReadKey(true);

}
 }
}

QubeVu Developer Guide 42

9 Appendix C – C# .Net code samples

Sample projects were created using Visual Studio 2010 and they target .NET Framework 4 Client Profile.
These samples should work fine with lower versions of Visual Studio and .NET Framework as well.

Samples take advantage of the QubeVuService proxy class. The source code for this class is provided, but
it can also be generated automatically based on the WSDL file for QubeVuService (in
SDK_root\wsdl\QubeVuService.wsdl) using the wsdl.exe tool. The wsdl.exe tool is part of most recent
versions of Visual Studio installations.

Most sample projects assume that the device is running at 169.254.1.1 IP address.

9.1 Dim101

Basic demo. Connects to QubeVu, polls for status once, displays dimensions, image URLs. (Same as
Appendix B – Sample .Net client code.)

9.2 Dim102

Expands on the previous project by adding extended status monitoring, reports capture id, and capture
definition name. Infinite loop polls for status updates continuously.

9.3 Dim103

Expands on the previous project by adding barcode recognition. This sample also has added functionality
for saving of all of the low resolution images, also, saving the point coordinates for faces in wireframe
model of the scanned object.

9.4 Dim104

Sample demonstrates how to extract and save a rotated and cropped high resolution image of the
scanned object. It retains barcode recognition functionality from the previous sample, but does not save
low resolution images or wireframe data.

9.5 ExternalTrigger

Demonstrates how to trigger a scan via the "Capture" API call. Also shows how to create a capture
definition which enables barcode recognition on the device itself (no need for barcode recognition
library on client side).

You may run Dim102 and/or Dim103 while running ExternalTrigger at the same time. When you press
any key to trigger a scan/capture in ExternalTrigger you should observe the other windows reporting the
status of the device accordingly.

QubeVu Developer Guide 43

9.6 Barcodes

Demonstrates the use of the QubeVuBarcodesAPI.dll 1D barcode recognition library.

9.7 Barcodes2D

Demonstrates the use of the Postea.QubeVu2DBCRecognition.dll 2D barcode recognition library.

9.8 Barcodes2D_Dtk

Demonstrates the use of the Postea.QubeVu2DBCRecognition.dll 2D barcode recognition library with
DTK barcode reader integration.

9.9 Barcodes2D_Dtk_with_key

Demonstrates the use of the Postea.QubeVu2DBCRecognition.dll 2D barcode recognition library with
DTK barcode reader integration. This version hardcodes a DTK developer license key, which allows full
functionality on PCs where a DTK runtime license has been activated. Due to DTK’s licensing restrictions
only the compiled binary is distributed in the samples\bin folder.

9.10 ImageConversion

Expands on Dim102 sample project. Retrieves dimensions, high resolution image and saves it in both its
original format (optional) as well as a rasterized black and white TIFF image for reduced size.

QubeVu Developer Guide 44

10 Appendix D – Sample HTTP Dialog

10.1 QubeVu Status Query

10.1.1 Request (Internet Explorer 11, using Ajax polling in web page)

POST /WebServices/QubeVuService/Status HTTP/1.1
X-Requested-With: XMLHttpRequest
Referer: http://192.168.2.55/
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; Touch; rv:11.0) like Gecko
Content-Length: 0
Host: 192.168.2.55
Connection: Keep-Alive
Pragma: no-cache
Cookie: PHPSESSID=40rieamst0noou978pqn4v0np4

10.1.2 “Ready to Scan” Response from QubeVu (white-space added to body for readability)

HTTP/1.1 200 OK
Date: Mon, 22 Aug 2016 15:04:57 GMT
Server: Apache/2.4.7 (Ubuntu)
Last-Modified: Mon, 22 Aug 2016 15:04:57 GMT
ETag: W/"326-53aaa5f1a4397-gzip"
Accept-Ranges: bytes
Vary: Accept-Encoding
Access-Control-Allow-Origin: *
Cache-Control: no-store,no-cache
Expires: 0
Content-Length: 806
Keep-Alive: timeout=5, max=49
Connection: Keep-Alive
Content-Type: text/xml; charset=utf-8

<?xml version="1.0" encoding="utf-8"?>
<QVStatus Status="READY" CaptureId="226128" ExtendedStatus="UnsupportedFlatItem,ItemOutOfBounds"
xmlns="http://postea.com/WebServices/QubeVu" OutOfBounds="10">
 <DateTime>2016-08-22 11:04:57 -0400</DateTime>
 <Error Code="0" Message=""/>
 <LiveData TrackingId="1702756">

 <TrackerImage Name="LowRes" Url="/Results/peekimages/16_1702756/TrackerImagePeek.bmp"/>
 </LiveData>
 <CapturedData CaptureDefinitionName="" CaptureId="226128">
 <DateTime>2016-08-22 11:04:57 -0400</DateTime>
 <Weight>0</Weight>
 <ScaleData Name="">

<Weight>0</Weight>
<ScaleFactor>0</ScaleFactor>

 <WeightUnit/>
<RawData/>
<DisplayWeight/>
<IsStable>true</IsStable>

 </ScaleData>
 <Dimensions Irregular="false" Undersize="0" Oversize="0" Refinement="0" DimUnit="mm" OutOfBounds="0"
UnknownDimensions="true" UnknownDimensionsReason="Unknown">

<Length>0</Length>
<Width>0</Width>
<Height>0</Height>

 </Dimensions>
 </CapturedData>
 <Crc>0x0ec8d78c</Crc>
</QVStatus>

QubeVu Developer Guide 45

10.1.3 “Item Scanned” Sample Response from QubeVu

HTTP/1.1 200 OK
Date: Mon, 23 Jan 2017 22:32:02 GMT
Server: Apache/2.4.7 (Ubuntu)
Last-Modified: Mon, 23 Jan 2017 22:32:02 GMT
ETag: W/"5a4-53aaa9da45580-gzip"
Accept-Ranges: bytes
Vary: Accept-Encoding
Access-Control-Allow-Origin: *
Cache-Control: no-store,no-cache
Expires: 0
Content-Length: 3895
Keep-Alive: timeout=5, max=91
Connection: Keep-Alive
Content-Type: text/xml; charset=utf-8

<?xml version="1.0" encoding="utf-8"?>
<QVStatus Status="REMOVE" CaptureId="51" ExtendedStatus="ItemDetected" xmlns="http://postea.com/WebServices/QubeVu"
OutOfBounds="0">
 <DateTime>2017-01-23 17:39:09 -0500</DateTime>
 <Error Code="0" Message=""/>
 <CapturedData CaptureDefinitionName="QVDemo" CaptureId="51">
 <DateTime>2017-01-23 17:39:02 -0500</DateTime>
 <Weight>0</Weight>
 <ScaleData Name="">

<Weight>0</Weight>
<ScaleFactor>0</ScaleFactor>
<WeightUnit/>
<RawData/>
<DisplayWeight/>
<IsStable>true</IsStable>

 </ScaleData>
 <Dimensions Irregular="false" Undersize="2" Oversize="0" Refinement="15" DimUnit="mm" OutOfBounds="0"
UnknownDimensions="false" UnknownDimensionsReason="">

<Length>180</Length>
<Width>80</Width>
<Height>255</Height>

 </Dimensions>
 <RawDimensions DimUnit="mm">

<Length>179.5</Length>
<Width>80.8</Width>
<Height>255.4</Height>

 </RawDimensions>
 <TrackerImage Url="/Results/QVTrackerImage.bmp" Name="">

<ItemRect>
<CenterX>153</CenterX>
<CenterY>154</CenterY>
<D1>38</D1>
<D2>20</D2>
<Theta>1.001886</Theta>

</ItemRect>
<ItemWireFrame>

<Faces>
<Face Visible="true">

<Vertices>
<Point>

<X>151</X><Y>134</Y>
</Point>
<Point>

<X>136</X><Y>143</Y>
 </Point>

<Point>
<X>141</X><Y>138</Y>

</Point>
<Point>

<X>153</X><Y>131</Y>
</Point>

</Vertices>
</Face>
<Face Visible="false">

<Vertices>
<Point>

<X>157</X><Y>165</Y>
</Point>
<Point>

<X>169</X><Y>158</Y>
</Point>

QubeVu Developer Guide 46

<Point>
<X>153</X><Y>131</Y>

</Point>
<Point>

<X>141</X><Y>138</Y>
</Point>

</Vertices>
</Face>
<Face Visible="true">

<Vertices>
<Point>

<X>151</X><Y>134</Y>
 </Point>

<Point>
<X>153</X><Y>131</Y>

</Point>
<Point>

<X>169</X><Y>158</Y>
</Point>
<Point>

<X>170</X><Y>166</Y>
</Point>

</Vertices>
</Face>
<Face Visible="false">

<Vertices>
<Point>

<X>157</X><Y>165</Y>
</Point>
<Point>

<X>141</X><Y>138</Y>
</Point>
<Point>

<X>136</X><Y>143</Y>
</Point>
<Point>

<X>156</X><Y>175</Y>
</Point>

</Vertices>
</Face>
<Face Visible="true">

 <Vertices>
<Point>

<X>151</X><Y>134</Y>
</Point>
<Point>

<X>170</X><Y>166</Y>
</Point>
<Point>

<X>156</X><Y>175</Y>
</Point>
<Point>

<X>136</X><Y>143</Y>
</Point>

</Vertices>
</Face>
<Face Visible="false">

<Vertices>
<Point>

<X>157</X><Y>165</Y>
 </Point>
<Point>

<X>156</X><Y>175</Y>
</Point>
<Point>

<X>170</X><Y>166</Y>
</Point>
<Point>

<X>169</X><Y>158</Y>
</Point>

</Vertices>
</Face>

</Faces>
</ItemWireFrame>

 </TrackerImage>
 <LowResImages>

<LowResImage Url="/Results/QVLowResImage.bmp" Name="LowResImage1">
<ItemRect>

<CenterX>306</CenterX>

QubeVu Developer Guide 47

<CenterY>309</CenterY>
<D1>77</D1>
<D2>40</D2>
<Theta>1.001886</Theta>

</ItemRect>
<ItemWireFrame>

<Faces>
<Face Visible="true">

<Vertices>
<Point>

<X>302</X><Y>268</Y>
</Point>
<Point>

<X>272</X><Y>286</Y>
</Point>
<Point>

<X>282</X><Y>276</Y>
</Point>
<Point>

<X>306</X><Y>262</Y>
</Point>

</Vertices>
</Face>
<Face Visible="false">

<Vertices>
<Point>

<X>314</X><Y>330</Y>
</Point>
<Point>

<X>338</X><Y>316</Y>
</Point>
<Point>

<X>306</X><Y>262</Y>
</Point>
<Point>

<X>282</X><Y>276</Y>
</Point>

</Vertices>
</Face>
<Face Visible="true">

<Vertices>
<Point>

<X>302</X><Y>268</Y>
</Point>
<Point>

<X>306</X><Y>262</Y>
</Point>
<Point>

<X>338</X><Y>316</Y>
</Point>
<Point>

<X>340</X><Y>332</Y>
</Point>

</Vertices>
</Face>
<Face Visible="false">

<Vertices>
<Point>

<X>314</X><Y>330</Y>
</Point>
<Point>

<X>282</X><Y>276</Y>
</Point>
<Point>

<X>272</X><Y>286</Y>
</Point>
<Point>

<X>312</X><Y>350</Y>
</Point>

</Vertices>
</Face>
<Face Visible="true">

<Vertices>
<Point>

<X>302</X><Y>268</Y>
</Point>
<Point>

<X>340</X><Y>332</Y>
</Point>

QubeVu Developer Guide 48

<Point>
<X>312</X><Y>350</Y>

 </Point>
<Point>

<X>272</X><Y>286</Y>
</Point>

</Vertices>
</Face>
<Face Visible="false">

<Vertices>
<Point>

<X>314</X><Y>330</Y>
</Point>
<Point>

<X>312</X><Y>350</Y>
</Point>
<Point>

<X>340</X><Y>332</Y>
</Point>
<Point>

<X>338</X><Y>316</Y>
</Point>

</Vertices>
</Face>

</Faces>
</ItemWireFrame>

</LowResImage>
 </LowResImages>
 <HighResImages>

<HighResImage Url="/Results/QVHighResImage.bmp" Name="HighResImage1">
<ItemRect>

<CenterX>1576</CenterX>
<CenterY>1996</CenterY>
<D1>1410</D1>
<D2>635</D2>
<Theta>0.928244</Theta>

</ItemRect>
<Barcodes/>

</HighResImage>
 </HighResImages>
 </CapturedData>
 <Crc>0x5cbc8786</Crc>
</QVStatus>

QubeVu Developer Guide 49

11 Appendix E – Universal Windows Platform Sample (C#)

A UWP sample project is included in the SDK. This sample project has been tested with the latest
available Windows IoT OS (at the time of this writing) on Raspberry Pi 3 hardware. Development of UWP
apps require the latest Visual Studio 2015 (Update 2 at the time of this writing) as well as the Windows
10 SDK.

The sample takes advantage of the QubeVuService proxy class (QubeVuServiceAsyncClient.cs). This is a
different proxy class than what is discussed in the previous section. The asynchronous C# proxy class is
available for use with Windows Store apps and Universal Windows Platform development projects
(including, but not limited to Windows IoT projects). This class uses the newer Windows.Web.Http
namespace in favour of the older System.Net.Http namespace, while also providing only awaitable
methods for API calls. This class must be used in conjunction with the code file containing all the
QubeVuService type definitions (QubeVuServiceTypes.cs) which has been automatically generated from
the WSDL file. Both files can be found in SDK_root\common\src folder.

The UWP sample folder also contains compiled app packages for Intel and ARM architectures as well as
instructions on how to sideload the app on Windows 10 desktop/table editions. The README file has
instructions on how to deploy the compiled ARM app package on Raspberry Pi 2/3.

11.1 Dim101

Basic demo. Connects to QubeVu, polls for status, displays dimensions.

QubeVu Developer Guide 50

12 Appendix F – QubeVuBarcodes Client API

The barcode library is implemented as a Windows DLL QubeVuBarcodesAPI.dll (Linux version is available
on request) and exposes the following four functions: CreateReader, CreateReaderMT, DestroyReader
and RecognizeBarcode. Function signatures and necessary supporting structures are defined in
QubeVuBarcodesAPI.cs file in the SDK.

QubeVuBarcodesAPI.dll depends on libiomp5md.dll which is located in the <SDK root>\common\bin
folder. Any client application consuming QubeVuBarcodesAPI.dll must have this dependent library
present in the same folder where the executable resides.

12.1 Function Reference

CreateReader

Creates a new instance of the barcode reader engine and returns a handle to it. The constructor can
take a parameter which specifies which barcode symbologies are being sought.

CreateReaderMT

Creates a new instance of the barcode reader engine and returns a handle to it. This function lets callers
specify the number of threads the library should use to recognize barcodes as well as the number of
picture segments each thread will process. Calling this function with 1/1 for threads and parts-per-
thread values is an alias to CreateReader function above.

DestroyReader

Destroys the specified reader and frees any memory associated with it.

GetDefaultBcTypes

Returns the enumeration flags of the default configuration for selected barcode types (when not
explicitly specified through the deprecated shorter-form constructor).

RecognizeBarcode

Scans the specified image for barcodes.

12.2 Supported Barcode Symbologies

EAN13 = 1
CODE128 = 2
CODE39 = 4
CODE93 = 8
EAN8 = 16
UPCE = 32
UPCX = 64
INT25 = 128
CODABAR = 256
PATCHCODE = 512

QubeVu Developer Guide 51

The flags on the left can be combined (|), or the numeric values on the right can be added to specify
multiple symbologies at once as per standard enumeration flag usage patterns.

12.3 Code samples

A C# code sample project (Visual Studio 2010 or higher is required) demonstrating usage of this library in
more detail can be found in SDK\samples\CSharp\Barcodes_cs folder.

The SDK also includes a precompiled executable in the SDK\samples\bin folder. Barcodes_cs.exe will
demonstrate barcode recognition capabilities of this library without the need of a compiler. Usage:

Barcodes_cs.exe <image_name>

e.g.

Barcodes_cs.exe QVHighResImage.bmp

Which should produce an output similar to the image below.

QubeVu Developer Guide 52

13 Appendix G – Postea.QubeVu2DBCRecognition Client API

The 2D barcode library is implemented as a Windows DLL Postea.QubeVu2DBCRecognition.dll (Linux
version is available on request) and exposes the BarcodeRecognizer2D and BarcodeRecognizer2D_DTK
classes and their ReadImage function. Detailed function signatures and necessary supporting structures
are also exposed through class metadata which can be viewed in Visual Studio IDE.

The use of BarcodeRecognizer2D_DTK class requires that you have a valid developer licence and that
you pass it to the class in the constructor. Consumers of the app relying on this class may require that
the PC where the final app is deployed has an active DTK runtime license depending on the DTK licensing
model used (limited vs. unlimited developer license type passed to BarcodeRecognizer2D_DTK class).

13.1 BarcodeRecognizer2D Class Function Reference

BarcodeRecognizer2D(bcTypes2D)

Creates a new instance of the 2D barcode reader engine and returns a handle to it. bcTypes2D is a bit
flag enumeration type corresponding to the available types of 2D barcodes the library supports. When
the barcode type parameter is omitted all available barcode types will be recognized.

ReadImage(Image)

Recognizes 2D barcodes in the image passed to the function. Returns a collection of barcode
recognitions.

13.2 BarcodeRecognizer2D_DTK Class Reference

The use of BarcodeRecognizer2D_DTK class requires that you have a valid developer licence which you
pass to the constructor. For unlimited licensing the corresponding unlimited runtime or server license
key must also be specified. For limited licensing model the unlimited runtime/server license parameter
must be specified as an empty string. Consumers of the app relying on this class may require that the PC
where the final app is deployed has an active DTK runtime license depending on the DTK licensing model
used (based on if unlimited license type passed to BarcodeRecognizer2D_DTK class or not).

BarcodeRecognizer2D_DTK(dtkDeveloperLicenseKey)

Creates a new instance of the 2D barcode reader engine (wrapping the DTK barcode reader engine) and
returns a handle to it. All supported 2D barcode types will be recognized.

If a valid developer key is used, but the DTK component is not licensed (e.g. lack of runtime license
activation etc.), all constructors of this class will throw LicenseException type exception.

Be sure to call Dispose method on the BarcodeRecognizer2D_DTK object instance at the end of your
code block, or employ a using block to adhere to the IDisposable pattern.

Using this form of the constructor is only compatible with limited licensing model.

QubeVu Developer Guide 53

BarcodeRecognizer2D_DTK(dtkDeveloperLicenseKey, dtkRuntimeLicenseKey)

Creates a new instance of the 2D barcode reader engine similarly as described above. Use this
constructor with the unlimited DTK licensing model. If the second parameter is an empty string, then the
first parameter will be treated as a developer license used for limited licensing model.

BarcodeRecognizer2D_DTK(dtkDeveloperLicenseKey, dtkRuntimeLicenseKey, bcTypes2D)

Creates a new instance of the 2D barcode reader engine similarly as described above. bcTypes2D is a
bit flag enumeration type corresponding to the available types of 2D barcodes the library supports.

BarcodeRecognizer2D_DTK(dtkDeveloperLicenseKey, dtkRuntimeLicenseKey,
barcodeSettingsXml)

Creates a new instance of the 2D barcode reader engine similarly as described above.
barcodeSettingsXml parameter is an XML string containing DTK-specific settings. It can be used
when you want to apply DTK-library specific settings while creating the barcode reader. Use
GetSettingsXmlString function to generate XML settings string of the current
BarcodeRecognizer2D_DTK instance.

ReadImage(Image)

Recognizes 2D barcodes in the image passed to the function. Returns a collection of barcode
recognitions.

IsDtkLicensed

Returns true if DTK component has been licensed (and activated on the local PC, if applicable), false
otherwise. No exception is thrown when DTK component is unlicensed.

GetSettingsXmlString()

Helper function which extracts the DTK-specific settings from the current instance of the class and
returns it as an XML string. You may use this method to persist configuration to disk and/or modify it
and then load it back passing it to the appropriate constructor.

DtkBarcodeToBarcodeInfo(DTKBarReader.Barcode)

Helper function to help convert DTK-specific barcode data to barcode data compatible with
Postea.QubeVu2DBCRecognition library. This method may be used with the DTK SDK to allow
compatibility between the results returned by DTK’s many ReadFrom methods.

13.3 DTK XML Settings String

DTK XML settings

The full range of DTK barcode reader settings are exposed through the barcodeSettingsXml
parameter of the BarcodeRecognizer2D_DTK constructor. The following section is only an excerpt
from the full DTK SDK documentation. For the complete list of available settings, including available
barcode types which can be recognized by the DTK library, please refer to the DTK SDK documentation.

QubeVu Developer Guide 54

XML setting element Description

ThresholdStep The step of the threshold value for the 'Multiple' threshold
mode.

ThresholdMode Image thresholding mode: TM_Adaptive, TM_Automatic,
TM_Fixed or TM_Multiple.

ThresholdCount The number of the threshold values for the 'Multiple' threshold
mode.

Threshold The color threshold level for distinguishing of the background
and foreground pixels.

ScanPage The page number for barcode recognition (for multipage images
only).

ScanInterval The scanning interval for recognition (in pixels). Possible values
are from 1 to 10.

Code39NoStartStop Specifies whether the Code 39 barcode have not start and stop
symbols '*' (asterisk). The default value is False.

QRCodeRequiredECCLevel The value that specifies the required error correction level for
QR codes (0..3). Default value -1 (all ECC levels).

QuietZoneSize Gets or sets the expected size of the 'quiet zone' of the barcode.

PDFPassword The parameter defines the password which will be used to open
password-protected PDF documents.

PDFRenderDPI The parameter defines DPI (dot per inch) for PDF files rendering.

PDFReadingType The type of the PDF documents reading.

ImageSharp Specifies whether the sharpening operation must be executed
before recognition. (valid values are 0 or 4)

ImageInvert Specifies whether the image inversion is required before
recognition. (valid values are 0 or 5)

ImageErode Specifies whether the morphological operation 'Erosion' must
be executed before recognition. (valid values are 0 or 2)

ImageDilate Specifies whether the morphological operation 'Dilation' must
be executed before recognition. (valid values are 0 or 3)

ImageDespeckle Specifies whether the morphological operation Despeckle must
be executed before recognition. (valid values are 0 or 1)

ConvertUPCEtoUPCA Specifies whether the UPC-E barcode must be converted to
UPC-A format.

I2of5Checksum Specifies whether the checksum validation is required for 2of5
Interleaved barcodes.

Code93Checksum Specifies whether the checksum validation is required for Code
93 barcodes.

QubeVu Developer Guide 55

Code39Checksum Specifies whether the checksum validation is required for Code
39 barcodes.

Code11Checksum Specifies whether the checksum validation is required for Code
11 barcodes.

BarcodeTypes The barcode types defined for recognition. E.g. BT_All,
BT_All_1D, BT_All_2D, BT_Code128, BT_PDF417, etc. For the
complete list of available barcode types, please refer to the DTK
SDK documentation.

RecognitionTimeout The value that specifies the amount of time (in milliseconds)
after which the barcode recognition will be stopped. (0 means
unlimited time)

BarcodesToRead The number of expected barcodes.

BarcodeOrientation Expected orientation of the barcode. E.g. BO_All or
BO_LeftToRight, etc.

ScanRectangle Scanning rectangle for barcode recognition. Must follow the
format {X=0,Y=0,Width=0,Height=0} where 0-s should be
replaced by the appropriate clipping parameters in pixels.

DTK XML settings sample

<?xml version="1.0" encoding="utf-8"?>
<BarcodeReader>
 <ThresholdStep>16</ThresholdStep>
 <ThresholdMode>TM_Multiple</ThresholdMode>
 <ThresholdCount>4</ThresholdCount>
 <Threshold>128</Threshold>
 <ScanPage>0</ScanPage>
 <ScanInterval>5</ScanInterval>
 <Code39NoStartStop>False</Code39NoStartStop>
 <QRCodeRequiredECCLevel>-1</QRCodeRequiredECCLevel>
 <QuietZoneSize>QZ_Normal</QuietZoneSize>
 <PDFPassword></PDFPassword>
 <PDFRenderDPI>300</PDFRenderDPI>
 <PDFReadingType>PDF_Images</PDFReadingType>
 <ImageSharp>4</ImageSharp>
 <ImageInvert>0</ImageInvert>
 <ImageErode>0</ImageErode>
 <ImageDilate>0</ImageDilate>
 <ImageDespeckle>0</ImageDespeckle>
 <ConvertUPCEtoUPCA>False</ConvertUPCEtoUPCA>
 <I2of5Checksum>False</I2of5Checksum>
 <Code93Checksum>False</Code93Checksum>
 <Code39Checksum>False</Code39Checksum>
 <Code11Checksum>False</Code11Checksum>
 <BarcodeTypes>BT_PDF417</BarcodeTypes>
 <RecognitionTimeout>0</RecognitionTimeout>
 <BarcodesToRead>1</BarcodesToRead>
 <BarcodeOrientation>15</BarcodeOrientation>
 <ScanRectangle>{X=0,Y=0,Width=0,Height=0}</ScanRectangle>
</BarcodeReader>

QubeVu Developer Guide 56

14 Appendix H – Supported barcodes

The following barcode types are supported by QubeVu:
EAN13, CODE128, CODE39, CODE93, EAN8, UPCE, UPCX, INT25, CODABAR, PATCHCODE

The following 2D barcode types are supported:
DATAMATRIX, QR, PDF417

QubeVu Developer Guide 57

15 Appendix I – ItemRect illustration

QubeVu Developer Guide 58

16 Appendix J – ItemWireFrame sample

The image below corresponds to the status XML sample in Section 9.1.3. The image shown is the
TrackerImage with a resolution of 320x240 pixels. The sample object has 3 visible and 3 invisible sides.
Visible sides have been drawn with thick solid blue lines, while invisible facets are drawn with thinner
dashed lines.

