iRite Programming Standard
Version 1.00

February 15, 2002

Scope

This document defines the standard way all programmers will create iRite software. Every programmer is expected to be intimately familiar with the Standard, and to understand and accept these requirements. All consultants and contractors will also adhere to this Standard.

The reason for the Standard is to insure all RLWS-developed software meets minimum levels of readability and maintainability. Source code has two equally important functions: it must work, and it must clearly communicate how it works to a future programmer or the future version of yourself. Just as standard English grammar and spelling makes prose readable, standardized coding conventions ease readability of one’s firmware.

Part of every code review is to insure the reviewed modules and functions meet the requirements of the Standard. Code that does not meet this Standard will be rejected.

We recognize that no Standard can cover every eventuality. There may be times where it makes sense to take exception to one or more of the requirements incorporated in this document. Every exception must meet the following requirements:

· Clear Reasons - Before making an exception to the Standard, the programmer(s) will clearly spell out and understand the reasons involved, and will communicate these reasons to the project manager. The reasons must involve clear benefit to the project and/or RLWS; stylistic motivations, or programmer preferences and idiosyncrasies are not adequate reasons for making an exception.

· Approval - The project manager will approve all exceptions made.

· Documentation - The effected module or function will have the exception clearly documented in the comments, so during code reviews and later maintenance the current and future technical staff understand the reasons for the exception, and the nature of the exception.

Modules

General

A Module is a single file of source code that contains one or more functions or routines, as well as the variables needed to support the functions.

Each module contains a number of related functions. For instance, a Printing module may include all Print formatting functions in a single file. Grouping functions in this manner makes it easier to find relevant sections of code, and allows more effective encapsulation.

Encapsulation - hiding the details of a function’s operation, and keeping the variables used by the function local - is absolutely essential. Though iRite doesn't explicitly support encapsulation, with careful coding you can get many of the benefits of this powerful idea as do people using OOP languages.

In iRite you can define all variables inside the modules that use those values. Encapsulate the data by defining each variable for the scope of the functions that use these variables only. Keep them private within the function, or within the module, that uses them.

Modules tend to grow large enough that they are unmanageable. Keep module sizes under 1000 lines to insure tools (compilers and assemblers) are not stressed to the point they become slow and to ease in searching.

Templates

To encourage a uniform module look and feel, create module templates named “template.src” and “template.iri”, stored in the source directory that becomes part of the code base maintained by the version control system. Use one of these files as the base for all new modules. The module template includes a standardized form for the header (the comment block preceding all code), a standard spot for file includes and module-wide declarations, subprograms (handlers, functions, and procedures), and ProgramStartup. The templates also include the standard format for subprograms (handlers, functions, and procedures).

Here’s a sample template for iRite code:

--

-- Program Name: Template

--

-- Copyright 2002 Company Name as an unpublished work.

-- All Rights Reserved.

--

-- The information contained herein is confidential property of

-- Company Name. The use, copying, transfer or disclosure of such

-- information is prohibited except by express written agreement with

-- Company Name.

--

-- First written on Month Day, Year by FirstName LastName.

--

-- Module Description:

-- This file is the iRite source code for a 920i program.

--

-- This program will (fill in detailed description of the programs

-- purpose here).

--

-- Please keep all lines 79 characters or less.

-- The name of the program is always the first line of code.

program Template;

-- Put Include (.iri) file here.

#include template.iri

 --

 -- Begin constants and aliases definitions here.

 g_csProgName : constant string := "Template Program";

 g_csVersion : constant string := "0.01";

 -- End of constants and aliases.

 --

 --

 -- Begin user created types (enumerations, records, arrays) definitions.

 type boolean is (FALSE, TRUE);

 -- End of user created types (enumerations, records, arrays).

 --

 --

 -- Start global variables definitions here. Don't forget to initialize

 -- them in the system startup event handler.

 g_iBuild : integer;

 g_srcResult : SysCode;

 -- End of global variables.

 --

 --

 -- Start functions and procedures definitions here.

 --

 -- Function Name : MakeVersionString

 -- Created by : Company Name or Programmer Name

 -- Last modified on : Jan 10, 2002

 -- Purpose : This function will format the version and build into

 -- a string and return the string.

 -- Value Parameters : none

 -- Variable Params : none

 -- Return Parameter : a string representation of the version and build in

 -- the format xx.xx.xx

 -- Side Effects : none

 --

 function MakeVersionString : string;

 sTemp : string;

 begin

 if g_iBuild > 9 then

 sTemp := ("Ver " + g_csVersion + "." + IntegerToString(g_iBuild, 2));

 else

 sTemp := ("Ver " + g_csVersion + ".0" + IntegerToString(g_iBuild, 1));

 end if;

 return sTemp;

 end;

 --

 -- Procedure Name : DisplayVersion

 -- Created by : Company Name or Programmer Name

 -- Last modified on : Jan 15, 2002

 -- Purpose : This procedure will diplay the program name and

 -- version number to the diplay.

 -- Value Parameters : none

 -- Variable Params : none

 -- Side Effects : The program name and version is put on the display.

 --

 procedure DisplayVersion;

 begin

 DisplayStatus(g_csProgName + " " + MakeVersionString);

 end;

 -- End of functions and procedures.

 --

 --

 -- Begin event handler definitions here.

 -- End of event handlers.

 --

--

-- This chunk of code is the system startup event handler.

begin

 -- Initialize all global variables here.

 -- Increment the build number every time you make a change to a new version.

 g_iBuild := 1;

 -- Display the version number to the display.

 DisplayVersion;

end Template;

-- This name must match the name following "program" keyword at

-- the beginning of the program.

Module Names
Never include the project’s name or acronym as part of each module name. It’s much better to use separate directories for each project.

Big projects may require many modules; scrolling through a project directory listing there should only be one *.src file. Multiple *.iri files are allowed if not expected.

File extensions will be:

iRite Source Code
FileName.src

iRev Import File
FileName.iri

Assembler files
FileName.s

Compiled Code
FileName.cod

Compiler Output File
FileName.src.out

Text Files
FileName.txt

Batch Files
FileName.bat

Identifiers

Names

Use long descriptive names to clearly specify the identifier's meaning. iRite can use up to 1000 characters, but they should be kept to 32 character or less.

Separate words within the identifier by capital letters or underscores. Consider how much harder icantreadthis is on the eyes versus ICanReadThis or I_can_read_this.

The iRite compiler doesn't allow identifiers to be named with a number as the first character. Also a space (blank) is not a valid character in an identifier. The idea of naming keywords in iRite as all lowercase is a style and not a requirement. To avoid confusion, you might want to avoid using all lowercase to name your identifiers.

Over the years, the style used for descriptively naming identifiers (variables more so than function names) has been an area of great debate in the programming world. Years ago, before editors with “cut and paste” and “global replace” functionality, identifier names were kept as short as possible, to avoid extra typing. These days, short, coded, names that only the original programmer can decipher are unacceptable. One exception is when naming fields in a record or database. Because of the “dot” notation of records and database types, the syntax to specifically call a field by name can lead to unreasonably long names, it is acceptable to abbreviate the names of record or database, and their fields.

Some naming schemes include information about the functional type of the identifier in the identifiers name. One such scheme, that adds a prefex to an identifier, developed long ago in the early days of DOS by Microsoft’s Chief Architect Dr. Charles Simonyi is call “Hungarian notation”. This system became widely used inside Microsoft. It came to be known as “Hungarian notation” because the prefixes make the variable names look a bit as though they’re written in some non-English language and because Simonyi is originally from Hungary. Variations of Hungarian notation have been accepted by some programmers outside of Microsoft. Many programmers find that it helps prevent coding errors because the functional type of every identifier is immediately known by its name. Many people don’t like using Hungarian notation for some rational reasons and also feel it is another “Microsoftism” being forced on a captive audience. Hungarian notation does tend to create long prefixes when you have a global array of constant integers for example. One thing is certain, once established in a style, it is hard for a programmer to embrace a different style. If you are new to programming or a veteran programmer looking for a different way, give the variation of Hungarian notation described below a try.

Functional Type Prefixes

integer

“i”

real

“r”

string

“s”

array

“a”

record

“rec”

enumeration

“e”

database record

“db”

constant

“c”

formal Variable parameter
“v”

global parameter

“g_”

true or false value

“flg” or “bo”

user defined aggregate type
“t”

Identifier naming examples

rWeight : real;

iMaxRows : integer := 4;

csCopyright : constant string := “Copyright 2002 RLWS”’

Global Variables

Global variables are responsible for some really hard to find bugs. Avoid them whenever possible.

The heart of a 920i program written in iRite is the event handlers. Because parameters cannot be passed to event handlers, some globals will be necessary. To make sure every global is quickly identified as a global, you might want to prefix each with a “g_”. For example, if you declare a global integer to store a user ID, then declare it like this.

g_iUserID : integer;

When globals are used in an .iri module, provide access functions to them instead of using them by name in the .src file.

Functions

Regardless of the project, keep functions small! The ideal size for viewing or printing is less than a page; in rare cases a function might exceed two pages. Break large functions into several smaller ones.

The only exception to this rule is the very rare case where a large if-elsif is required to handler many cases… but first look hard for a more structured alternative! If you have to write a large if-elsif statement with many cases, be sure to do the work under each case in another function to keep the if-elsif from running on for pages and pages.

Explicitly declare every parameter passed to each function. Clearly document the meaning of the parameter in the header comments.

Clearly document all changes to global data in the “Side effects:” part of the header comments.

In general, function names should follow the variable naming protocol. Remember that functions are the “verbs” in programs - they do things. Incorporate the concept of “action words” into the variables’ names. For example, use “Read_A/D” instead of “A/D_data”, or “CalculateArea” instead of “Area”.

Comments

Code implements an algorithm; the comments communicate the code’s operation to yourself and others. Adequate comments allow you to understand the system’s operation without having to read the code itself.

Write comments in clear English. Use the sentence structure your 3rd grade teacher tried to pound into your head in grade school. Avoid writing “War and Peace”; be concise yet explicit… but be complete.

Avoid long paragraphs. Use simple sentences: noun, verb, object. Use active voice: "iConveyor relay is energized until photo eye is made". Be complete. Good comments capture everything important about the problem at hand.

Use proper case. Using all caps or all lower case simply makes the comments harder to read.

Enter comments at block resolution and when necessary to clarify a line or the next few line. Don’t comment each line. Don’t put comments to the right of code except on a declaration. It is much more natural to comment groups of lines which work together to perform a macro function. However, never assume that long variable names create “self documenting code”. It should be possible to get a sense of the system’s operation by reading only the comments. Explain the meaning and function of every variable declaration. Explain the return value, if any. Long variable names are merely an aid to understanding; accompany the descriptive name with a deep, meaningful, prose description.

Coding Conventions

General

No line may ever be more than 79 characters.

Never, ever use “magic numbers”. Instead, first understand where the number comes from, then define it in a constant, and then document your understanding of the number in the constant’s declaration.

Proper Use of Control Structures

When writing an “if-then-elseif-else” statement, put the most likely case in the “if” clause. Put the least likely case in the “else” clause. Most of the time, you know what you are looking for, and the unlikely case, or exception, is usually handled in the “else” clause.

For example, if you are checking a number to make sure it is in range:

 if (iValue >= 0) and (iValue <= 32000) then

 -- Most values will fall into this case.

 eValueStatus = INRANGE;

 elsif iValue < 0 then

 eValueStatus = UNDERRANGE;

 else

 eValueStatus = OVERRRANGE;

 end if;

Use a “for” loop only when you know exactly how many time you want to loop. Never use a “for” loop and call the “exit” command when you want to exit the loop.

Here is an example of when to use a “for” loop. We want to initialize an array of strings where we know the number of elements in the array is defined in ciMaxArraySize.

 for iIndex := 1 to ciMaxArraySize

 loop

 asEmployeeName[iIndex] = “No Name”;

 end loop;

Here is a bad example of exiting a “for” loop. In this example we want to strip out any commas “,’ in the company name string, but if we get to the end of the string, then we should quit.

 sNewName = “”;

 for iIndex := 1 to ciMaxNameLength

 loop

 sOneChar = Mid$(sCompanyName, iIndex, 1);

 if sOneChar <> “,” then

 sNewName = sNewName + sOneChar;

 elsif sOneChar = “” then

 -- This means we are at the end of the string.

 exit; -- Bad!! Should have used a “while” loop.

 end if;

 end loop;

Here is the same example, but coded with a “while” loop. This is the better way.

 sNewName = “”;

 iIndex = 1;

 while (iIndex <= ciMaxNameLength) and not boDone

 loop

 sOneChar = Mid$(sCompanyName, iIndex, 1);

 if sOneChar <> “,” then

 sNewName = sNewName + sOneChar;

 elsif sOneChar = “” then

 -- This means we are at the end of the string.

 boDone = TRUE;

 end if;

 iIndex = iIndex + 1;

 end loop;

Spacing and Indentation

Put a space after every keyword, unless a semicolon is the next character, but never between function names and the argument list.

Put a space after each comma in argument lists.

Put a space before and after every binary operator (like +, -, etc.). Never put a space between a unary operator and its operand (e.g., unary minus “-“).

Indent iRite code in increments of two spaces. That is, every indent level is two, four, six, etc. spaces. Never use the Tab key. Not everybody uses the same editor and/or with the same tab stops. Using tabs might cause another programmer some effort to just make your source readable.

Formatting

Never nest IF statements more than three deep; deep nesting quickly becomes incomprehensible. It’s better to call a function.

Line up the “begin” and “end” statement and the line with the name of the function/procedure/handler. Indent the local declarations 2 spaces in from the “begin” and “end”. Indent the code 2 spaces from the “begin” and “end” like this:

 function CalculateCircum(rRadius : real) : real;

 rPie : real := 3.14;

 begin

 return (2 * rPie * rRadius);

 end;

When splitting a line of code, indent the second line like this:

 MyFunction(rArg1 : real, iArg2 : integer, sArg3 : string,

 sArg4 : string, var viChanged : integer)

or,

 if (flgIsTimeToFillBarrel or flgTheBarrelIsEmpty)

 and flgBatchNotComplete or (iValue < 0) then

 FillBarrel;

 end if;
Use too many parentheses. Never let the compiler resolve precedence; explicitly declare precedence via parenthesis.

A long “if – elseif” condition should be formatted like this:

 if eColor = RED then

 Writeln(iPrinter, “Red”);

 elsif eColor = BLUE then

 Writeln(iPrinter, “Blue”);

 elsif eColor = GREEN then

 Writeln(iPrinter, “Green”);

 else

 Writeln(iPrinter, “Unknown Color”);

 end if;

Here is an example of indentation and formatting for a small program (most comments have been removed):

program CircArea;

 -- Declare constants and aliases here.

 g_ciPrinterPort : constant integer := 2;

 -- Declare global variables here.

 g_iCount : integer;

 g_rRadius : real;

 g_rArea : real;

 g_sPrintText: string;

 function CircleArea(rRadius : real) : real;

 crPie : constant real := 3.141592654;

 begin

 -- The area of a circle is defined by: area = pie*(r^2).

 return (crPie * rRadius * rRadius);

 end;

begin

 for g_iCount := 1 to 10

 loop

 g_rRadius := g_iCount;

 g_rArea := CircleArea(g_rRadius);

 g_sPrintText := "The area of a circle with radius " + RealToString(g_rRadius, 4, 1)

 + " is " + RealToString(g_rArea, 7, 2);

 WriteLn(g_ciPrinterPort, g_sPrintText);

 end loop;

 end CircArea;

PAGE
1

